首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.  相似文献   

2.
Vegetation, testate amoebae, and metal concentrations in water and soil (mostly peat) were studied in two copper-rich treed swamps located north of Sackville, New Brunswick, Canada. One of the sites is partly disturbed, characterized by bare soil nearly devoid of vegetation cover except for isolated patches of the moss species, Pohlia nutans, around seepages and small streams. Copper concentrations in soil and water samples were high but varied among plots. Values in soil samples were as high as 16,000 μg/g in the open area, with 4550 μg/g being the mean. The highest value in groundwater was 1540 μg/l, with 292 μg/l being the mean. Twenty-seven testate amoebae species were identified from soil samples. The most abundant species were Cyclopyxis arcelloides and Centropyxis spp. Principal component analysis and detrended correspondence analysis showed that their abundance was especially high in the open area where copper concentrations were high, while species diversity of testate amoebae was low in the open area. This study suggests potential use of mosses and testate amoebae as bio-indicators and bio-monitoring tools for metals such as copper.  相似文献   

3.
Testate amoebae are an abundant and functionally important group of protists in peatlands, but little is known about the seasonal patterns of their communities. We investigated the relationships between testate amoeba diversity and community structure and water table depth and light conditions (shading vs. insolation) in a Sphagnum peatland in Northern Poland (Linje mire) in spring and summer 2010. We monitored the water table at five sites across the peatland and collected Sphagnum samples in lawn and hummock micro-sites around each piezometer, in spring (3 May) and mid-summer (6 August) 2010. Water table differed significantly between micro-sites and seasons (Kruskal–Wallis test, p = 0.001). The community structure of testate amoebae differed significantly between spring and summer in both hummock and lawn micro-sites. We recorded a small, but significant drop in Shannon diversity, between spring and summer (1.76 vs. 1.72). Strongest correlations were found between testate amoeba communities and water table lowering and light conditions. The relative abundance of mixotrophic species Hyalosphenia papilio, Archerella flavum and of Euglypha ciliata was higher in the summer.  相似文献   

4.
Monitoring tools are needed to assess changes in peatland biotic communities and ecosystem functions in response to on-going climate and other environmental changes. Although the responses of soil organisms and plants to ecological gradients and perturbations do not always correlate, peatland monitoring is mainly based on vegetation surveys. Testate amoebae, a group of protists, are important contributors to carbon and nitrogen cycling in organic soils and are useful bioindicators in peatland ecology and paleoecology. There is however little comparative data on the value of testate amoebae, vascular plants and bryophytes as bioindicators of micro-environmental gradients in peatlands.We compared the relationships of testate amoebae, bryophytes, and vascular plants with soil temperature, water table depth, micro-habitats and the carbon and nitrogen content of Sphagnum mosses in four peatlands along a 1300 m altitudinal gradient in Switzerland. We used the full diversity of vascular plants and bryophyte but only a selection of ten easily identifiable testate amoeba morpho-taxa (i.e. species or species-complexes).Indirect and direct gradient ordinations, multiple factor analysis (MFA) and transfer function models for inferring water table depth showed that a selection of ten testate amoeba taxa are more powerful (% variance explained in RDA) and accurate (discrimination among habitats) indicators of local conditions (micro-habitat type, water table depth and Sphagnum C/N ratio) than the vegetation (vascular plants and bryophytes either individually or combined and considering the full diversity).Our study showed that a limited list of ten easily identifiable testate amoeba taxa have higher bioindication value than the full bryophytes and vascular plants. Furthermore, testate amoebae can be analyzed on samples collected at any season (accessibility allowing and if precise sampling sites are well marked) – a clear advantage for biomonitoring and can be used to infer past changes from the peat record at the same taxonomic resolution. This simple approach could therefore be very useful for biomonitoring of peatlands.  相似文献   

5.
The present study gathers pioneering taxonomical and community data on testate amoebae and agglutinated tintinnids, analyzing their seasonal and spatial distribution patterns in the mesotidal system of the Guadiana Estuary, southeastern Portugal. To evaluate both groups’ potential as bioindicators in climate monitoring and paleoenvironmental reconstructions, their abundance, diversity and living proportions were compared to elevation in relation to mean sea-level, marine influence and to periods of elevated water levels. The distributions of testate amoebae and tintinnid total assemblages were also related to major physicochemical variables by means of multivariate analysis.From 49 surface sediment samples collected in winter and summer 2010, 17 species (25 strains) of testate amoebae were identified (in the 63 μm fraction). The Centropyxidae, mainly represented by Centropyxis aculeata, Centropyxis arcula and Centropyxis constricta, had the greatest density (71% of total individuals), while the Difflugidae represented the most species (82% of total species). Higher diversities and densities were observed in winter in the upper estuary, where salinity is negligible, and in the middle estuary where they are concentrated at the lower levels of the intertidal zone. Few or no individuals were observed in the highest marsh zones. In winter, dead testate amoebae were dominant, with empty tests accumulating in the sediments from post-mortem transport by high river discharge. In summer, an increase in the living fraction is observed, with living testate amoebae along the entire estuary, which could indicate that some species are able to live in the lower reaches of the estuary.Along with the testate amoebae, two species of agglutinated tintinnids (>63 μm), Stenosemella ventricosa and Tintinnopsis cf. lata, were abundant in the sediments. Their highest abundances were observed in summer. Living individuals were only recorded in summer, mainly in the vicinities of freshwater and sewage outflows, where elevated nutrient concentrations may be expected.The present study demonstrates that both testate amoebae and tintinnids have well defined patterns in their temporal and spatial distribution, offering high bioindicator potential in environmental/climate monitoring studies as well as in paleoenvironmental reconstructions.  相似文献   

6.
We hypothesized that at the very beginning of terrestrial ecosystem development, airborne testate amoebae play a pivotal role in facilitating organismic colonization and related soil processes. We, therefore, analyzed size and quantity of airborne testate amoebae and immigration and colonization success of airborne testate amoebae on a new land surface (experimental site “Chicken Creek”, artificial post-mining water catchment). Within an altogether 91-day exposure of 70 adhesive traps, 12 species of testate amoebae were identified to be of airborne origin. Phryganella acropodia (51% of all individuals found, diameter about 35–45 μm) and Centropyxis sphagnicola (23% of all individuals found, longest axis about 55–68 μm), occurred most frequently in the adhesive traps. We extrapolated an aerial amoeba deposition of 61 individuals d−1 m−2 (living and dead individuals combined). Although it would be necessary to have a longer sequence (some additional years), our analysis of the “target substrate” of aerial immigration (catchment site) may point to a shift from a stochastic (variable) beginning of community assembly to a more deterministic (stable) course. This shift was assigned to an age of seven years of initial soil development. Although experienced specialists are necessary to conduct these time-consuming studies, the presented data suggest that terrestrial amoebae are suitable indicators for initial ecosystem development and utilization.  相似文献   

7.
Peatlands subjected to sulfate deposition have been shown to produce less methane, believed to be due to competitive exclusion of methanogenic archaea by sulfate-reducing bacteria. Here, we address whether sulfate deposition produces impacts on a higher microbial group, the testate amoebae. Sodium sulfate was applied to experimental plots on a Scottish peatland and samples extracted after a period of more than 10 years. Impacts on testate amoebae were tested using redundancy analysis and Mann–Whitney tests. Results showed statistically significant impacts on amoebae communities particularly noted by decreased abundance of Trinema lineare, Corythion dubium, and Euglypha rotunda. As the species most reduced in abundance are all small bacterivores we suggest that our results support the hypothesis of a shift in dominant prokaryotes, although other explanations are possible. Our results demonstrate the sensitivity of peatland microbial communities to sulfate deposition and suggest sulfate may be a potentially important secondary control on testate amoebae communities.  相似文献   

8.
We present the first detailed analysis of subfossil testate amoebae from a tropical peatland. Testate amoebae were analysed in a 4-m peat core from western Amazonia (Peru) and a transfer function developed from the site was applied to reconstruct changes in water table over the past ca. 8,000 years. Testate amoebae were in very low abundance in the core, especially in the lower 125 cm, due to a combination of poor preservation and obscuration by other organic matter. A modified preparation method enabled at least 50 testate amoebae to be counted in each core sample. The most abundant taxa preserved include Centropyxis aculeata, Hyalosphenia subflava, Phryganella acropodia and Trigonopyxis arcula. Centropyxis aculeata, an unambiguous wet indicator, is variably present and indicates several phases of near-surface water table. Our work shows that even degraded, low-abundance assemblages of testate amoebae can provide useful information regarding the long-term ecohydrological developmental history of tropical peatlands.  相似文献   

9.
Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level.  相似文献   

10.
Paleoecological records suggest that growing season length and/or cloudiness may affect peatland carbon accumulation and testate amoeba-based environmental reconstructions, highlighting a need to understand how light intensity affects microbial communities. We shaded plots on two peatlands for two years to examine effects on testate amoeba communities, the relative abundance of mixotrophic and heterotrophic testate amoebae, transfer-function performance, and δ13C values of two species of mixotrophic testate amoebae. Surprisingly, relative abundance of mixotrophic species increased in shade, although compositional changes did not affect transfer-function performance. Shading did not affect δ13C values of Hyalosphenia papilio and Heleopera sphagni, which ranged from −23.5 to −19.6‰ and −23.2 to −19.2‰, respectively. These δ13C values were higher than those of potential food sources and lower than literature-derived values for Chlorella, the zoochlorellae inhabiting mixotrophic testate amoebae. δ13C values thus suggest that these mixotrophic species obtain some carbon from Chlorella, although coupled dietary and isotope studies are needed to quantify this contribution. More research is needed to assess impacts of light variability on peatland microbial communities; however, carbon sources are recorded by δ13C values of testate amoebae, indicating potential for studies of carbon cycling and how mixotrophy varies temporally and spatially.  相似文献   

11.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

12.
Peatlands around the world are exposed to anthropogenic or volcanogenic sulphur pollution. Impacts on peatland microbial communities have been inferred from changes in gas flux but have rarely been directly studied. In this study, the impacts of sulphuric acid deposition on peatland testate amoebae were investigated by analysis of experimental plots on a Scottish peatland almost 7 years after acid treatment. Results showed reduced concentration of live amoebae and changes in community structure which remained significant even when differences in pH were accounted for. Several possible explanations for the impacts can be proposed including taphonomic processes and changes in plant communities. Previous studies have inferred a shift from methanogenic archaea to sulphate-reducing bacteria in sulphate-treated peats; it is possible that the impacts detected here might relate to this change, perhaps through testate amoeba predation on methanotrophs.  相似文献   

13.
Sphagnum peatlands host a high abundance of protists, especially testate amoebae. Here, we designed a study to investigate the functional diversity of testate amoebae in relation to wetness and forest cover in Baltic bogs. We provided new data on the influence of openness/wetness gradient on testate amoebae communities, showing significant differences in selected testate amoebae (TA) traits. Three key messages emerged from our investigations: 1) we recorded an effect of peatland surface openness on testate amoebae functional traits that led us to accept the hypothesis that TA traits differ according to light intensity and hydrology. Mixotrophic species were recorded in high relative abundance in open plots, whereas they were nearly absent in forested sites; 2) we revealed a hydrological threshold for the occurrence of mixotrophic testate amoebae that might be very important in terms of peatland functioning and carbon sink vs. source context; and 3) mixotrophic species with organic tests were nearly absent in forested sites that were dominated by heterotrophic species with agglutinated or idiosomic tests. An important message from this study is that taxonomy of TA rather indicates the hydrological gradient whereas traits of mixotrophs the openness gradient.  相似文献   

14.
The effect of different overwintering temperatures (2.5 ± 1 °C in a refrigerator or outdoor natural overwintering on wet topsoil with weak frosts) on the freezing temperature and survival rate of turions of 10 aquatic plant species with different ecological traits (free-floating habit or bottom rooting) was studied using mini thermocouples. Dormant, non-hardened turions of 9 species exhibited freezing within a narrow temperature range of ?7.0 to ?10.2 °C, while Hydrocharis morsus-ranae froze at ?3.6 °C. The survival rate of the turions after the measurements was, however, very low (0–38%). In several species, the freezing temperature of turions at the beginning of germination was not significantly different (at p < 0.05) from the dormant ones. The mean freezing temperature of outdoor hardened turions of 6 species was within a very narrow range of ?2.8 to ?3.3 °C and was thus significantly higher by 4–7 °C (p < 0.0002) than that for the non-hardened turions. It is assumed that the freezing temperatures indicate freezing of the extracellular water. The hardened turions of all 7 species were able to survive mild winter frosts under the topsoil conditions at a rate of 76–100%. These characteristics suggest that the turions of aquatic species can be hardened by weak frosts and that their frost hardiness is based on the shift from frost avoidance in non-hardened turions to frost tolerance.  相似文献   

15.
Application of rhizospheric microbes to enhance the phytoremediation of organic pollutants has gained considerable attention recently due to their beneficial effects on the survival and growth of plants in contaminated soil sites. The present study was demonstrated to test the combined rhizoremediation potential of Staphylococcus cohnii subspecies urealyticus in the presence of tolerant plant Withania somnifera grown in lindane spiked soil. Withania was grown in garden soil spiked with 20 mg kg−1 of lindane and inoculated with 100 ml of microbial culture (8.1 × 106 CFU). Effect of microbial inoculation on plant growth, lindane uptake, microbial biomass carbon, dehydrogenase activity, residual lindane concentration and lindane dissipation percentage were analyzed. The microbial inoculation significantly enhances the growth and lindane uptake potential of test plant (p < 0.05). Furthermore, there was an enhanced dissipation of lindane observed in microbial inoculated soil than the dissipation rate in non-inoculated soil (p < 0.01) and the dissipation rate was positively correlated with the soil dehydrogenase activity and microbial biomass carbon (p < 0.05). The study concludes that the integrated use of tolerant plant species and rhizospheric microbial inoculation can enhance the dissipation of lindane, and have practical application for the in situ remediation of contaminated soils.  相似文献   

16.
Variations in the soil carbon sequestration capability of different types of salt marsh soils at Chongming Dongtan and its influencing factors were studied by analyzing the soil organic carbon (SOC) content, organic matter input and microbial activities. The results indicated that the total SOC content at Area A (southeast of Dongtan, sandy soil with Phragmites communis) was only 46.11% of that of Area B (northeast of Dongtan, clay soil with mixed P. communis and Spartina alterniflora) (P = 0.000 < 0.05), but their organic matter input per year was almost identical. These findings implied that Area B had a lower output of SOC. The microbial biomass at Area A was 3.83 times greater than that at Area B (P = 0.049 < 0.05); the soil catalase and invertase activities at Area A, which were related to carbon metabolism, were 60.31% (P = 0.006 < 0.05) and 34.33% (P = 0.021 < 0.05) higher than at Area B, respectively; and the soil respiration at Area A was also higher than at Area B. These findings implied that the microbial activities at Area A were greater than those at Area B, and therefore the carbon metabolism was rapid, resulting in increased SOC output at Area A. Increased water content and salinity in the clay soil at Area B may inhibit the microbial activities, thereby reducing the decomposition of the organic matter and enhancing carbon sequestration. In addition, some artificial measures for controlling spread of S. alterniflora at Area B (mowing/digging and tillage (M + D); mowing/digging and tillage/waterlogging (M + D + W)) were found to generally improve the microbial activity of soil, thereby increasing SOC output. However, when the two different physical controlling modes were compared, the SOC and microbial activities of the soil subjected to the M + D + W treatment were relatively high and low, respectively, due to waterlogging restraining the microbial metabolism. These findings indicated that the difference in microbial activities was the important factor leading to variability in the SOC sequestration capability between Areas A and B. Additionally, with the exception of soil texture and vegetation types, environmental conditions and artificial turbulence also influenced microbial activities of soil, and hence SOC output and organic carbon sequestration capability.  相似文献   

17.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

18.
The sensitivity of bacteria to the marine neurotoxins, brevetoxins, produced by the dinoflagellate Karenia brevis and raphidophytes Chattonella spp. remains an open question. We investigated the bacteriocidal effects of brevetoxin (PbTx-2) on the abundance and community composition of natural microbial communities by adding it to microbes from three coastal marine locations that have varying degrees of historical brevetoxin exposure: (1) Great Bay, New Jersey, (2) Rehoboth Bay, Delaware and (3) Sarasota Bay, Florida. The populations with limited or no documented exposure were more susceptible to the effects of PbTx-2 than the Gulf of Mexico populations which are frequently exposed to brevetoxins. The community with no prior documented exposure to brevetoxins showed significant (p = 0.03) changes in bacterial abundance occurring with additions greater than 2.5 μg PbTx-2 L−1. Brevetoxin concentrations during K. brevis blooms range from ∼2.5 to nearly 100 μg L−1 with typical concentrations of ∼10–30 μg L−1. In contrast to the unexposed populations, there was no significant decrease in bacterial cell number for the microbial community that was frequently exposed to brevetoxins, which implies variable sensitivity in natural communities. The diversity in the bacterial communities that were sensitive to PbTx-2 declined upon exposure. This suggests that the PbTx-2 was selecting for or against specific species. Mortality was much higher in the 200 μg PbTx-2 L−1 treatment after 48 h and >37% of the species disappeared in the bacterial communities with no documented exposure. These results suggest that toxic red tides may play a role in structuring bacterial communities.  相似文献   

19.
Grassland desertification seriously threatens economic and social sustainable development. How to control grassland desertification, and even to restore and reconstruct grassland has been paid much attention. Vegetation restoration is considered to be a very effective solution. Soil contains an immense diversity of microbes, and the characteristics of soil microbial communities are sensitive indicators of soil. It is important to understand the relationship between vegetation and soil microbial diversity during the restoration process. Based on Biolog-Eco technology, a case study was carried out to investigate the effects of five different vegetation restoration patterns on soil microbial functional diversity after four years in sandy land in Hulunbeier, China. The five vegetation restoration patterns included mono-cultivar planting of Agropyron cristatum (UA), mono-cultivar planting of Hedysarum fruticosum (UH), mono-cultivar planting of Caragana korshinskii (UC), and mixed-cultivar planting of A. cristatum and H. fruticosum (AC), mixed-cultivar planting of A. cristatum, H. fruticosum, C. korshinskii and Elymus nutans (ACHE). Completely degraded sandy land was used as control.The results indicated that the vegetation restoration significantly increased soil microbial activity. The Average Well Color Development (AWCD), which represents soil microbial metabolic activity, followed the order of UC > UH > UA > ACHE > AC > control. AWCD of five vegetation restoration patterns were all higher than that of control, and the highest soil microbial metabolic activity in mono-cultivar planting of C. korshinskii treatment was found. Five vegetation restoration patterns resulted in significant increase in Shannon index (H), evenness (E) and Simpson’s Dominance (D) of soil microbial community. Greater Shannon index and Simpson’s Dominance was observed in UC treatment than in other four vegetation restoration treatments and control. ACHE treatment had the highest evenness index (E) of soil microbial community. The principal component analysis (PCA) indicated a similar mode in carbon utilization for soil microbial community of UA, AC, ACHE and CK. However, UH and UC treatments had special carbon utilization mode. Treatments of UA, AC, ACHE and CK concentrated in the negative direction of the first principal component. Conversely, treatments of UH and UC concentrated in the positive direction of the first and second principal component respectively. The carbon sources mostly used by soil microbes were carbohydrates, amino acids, metabolic mediates and secondary metabolites. Therefore, vegetation restoration enhanced the metabolic activity and functional diversity of microbial community in sandy soil.  相似文献   

20.
Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ 13C and δ 15N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号