首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Callovian–Oxfordian calcareous nannofossils are documented from four sections distributed along a proximal–distal (slope to central basin) transect in the French Subalpine Basin (south-eastern France). The sections were dated and correlated using integrated ammonite, dinoflagellate and nannofossil biostratigraphies. The nannofossil assemblages are constantly dominated by Watznaueria britannica. However, significant spatial changes in nannofossil assemblage composition are recorded. Nannofossil assemblages recovered in slope and slope-to-basin transition sections are characterized by high abundances, lowest diversities, highest percentages of smallest-sized morphotypes of W. britannica, subordinated W. britannica/manivitiae (a morphotype described in this study), and are indicative of turbulent, unstable and/or eutrophic conditions. Towards the central part of the basin, as the nutrient content and turbulence declined and paleoenvironmental stability increased, the nannofossil assemblages become more diverse and characterized by lower relative abundances of W. britannica but higher contribution of larger morphotypes and higher relative abundances of W. barnesiae/fossacincta, Biscutum dubium and Zeugrhabdotus erectus. These latter small coccoliths, markers of high surface-waters fertility for the Cretaceous, were probably not competitive with respect to smaller-sized W. britannica in unstable and eutrophic surface waters for the Jurassic. An increase in the surface water productivity is recorded both in proximal and distal sections at the Callovian–Oxfordian transition, and is demonstrated both by an increase in nannofossil total abundances and in the relative abundances of taxa adapted to high-trophic levels. Thermal minimum in surface waters, as indicated by an increase in the percentages of the cool-water nannofossil taxa, is associated to increased productivity. Further studies will be necessary to demonstrate whether surface-water productivity changes, already recorded in the eastern Paris Basin, were global.  相似文献   

2.
In Aalenian times, the South Iberian Palaeomargin was part of the westernmost Tethys Ocean. The Median Subbetic palaeogeographic domain of the Betic Cordillera was a relatively deep trough in the South Iberian Palaeomargin during the Early Jurassic–Late Cretaceous interval, where mainly pelagic and hemipelagic limestones and marls were deposited. A semiquantitative study of nannofossil assemblages was performed in sediments from the upper Toarcian–lowest Bajocian from two Median Subbetic sections (Agua Larga and Cerro de Mahoma). Nannofossil assemblages are composed mainly of cosmopolitan and Tethyan taxa. The NJ8a, NJ8b and NJ9 Zones as well as other useful biohorizons (FOs of Triscutum tiziense and Carinolithus magharensis and LO of Similiscutum finchii) were identified and directly correlated to ammonite zones. The analysis of the relative abundances of some common to abundant taxa including Biscutum, Carinolithus superbus, Crepidolithus crassus, Lotharingius, Schizosphaerella and Watznaueria display noticeable fluctuations that can be correlated between the two sections. The comparison of these fluctuations with the δ13Ccarb curves and the interpretation of the palaeoecologic significance of some of these taxa provided an outline of the palaeoceanographic trophic regime throughout the interval studied. During the latest Toarcian–Early Aalenian, the high proportions of oligotrophic Schizosphaerella, moderately high proportions of C. crassus and low proportions of eutrophic Biscutum, correlate with low to moderate values in the δ13Ccarb curves. Radiolarians display low abundance throughout this interval. This is interpreted as an interval where mesotrophic to oligotrophic and stable conditions occurred in surface waters. The Middle Aalenian, characterized by high proportions of Schizosphaerella and C. crassus and low proportions of Biscutum, correlates with low values in the δ13Ccarb curves, and was interpreted to correspond to an episode when stable oligotrophic conditions occurred in surface waters. Radiolarians moderately increased throughout this interval. Finally, the Late Aalenian–earliest Bajocian interval, with lower proportions of Schizosphaerella and C. crassus, and higher proportions of Biscutum, also correlates with a significant positive excursion in the δ13Ccarb curve, suggesting a shift from oligo- to eutrophic conditions in surface waters. This change in productivity is also revealed by a conspicuous increase in radiolarian abundance, at the same time as a quasi-complete replacement of Early Jurassic radiolarian fauna took place. The analysis of faunal-flora turnovers reveals a causal link between the global carbon-cycle and the pelagic response. This noticeable faunal-flora change throughout the Late Aalenian–Bajocian can be interpreted as a major biological response to the drastic modification in the western Tethys palaeogeography as consequence of the Atlantic opening, which in turn caused a new pattern in the oceanic circulation.  相似文献   

3.
Most publications discussing Cenomanian–Turonian calcareous nannofossils focus on abundance fluctuations across the boundary interval. So far, there have been no studies that deal with the influence of palaeoenvironmental changes on the size of common Cenomanian–Turonian nannofossil taxa. The genera Biscutum, Broinsonia, Prediscosphaera, Retecapsa and Watznaueria have therefore been analysed from 19 samples of Cenomanian–Turonian age from the Goban Spur, northeast Atlantic. The genus Biscutum shows a slight decrease of mean length from 4.14 μm in the Cenomanian to 3.94 μm in the Turonian. Broinsonia is marked by a decrease from 6.07 μm in the Cenomanian to 5.64 μm in the Turonian. On the other hand, Prediscospheara increases in size from 4.98 μm in the Cenomanian to 5.61 μm in the Turonian. Two genera (Retecapsa, Watznaueria) show no significant changes in their mean length. The mean size of Biscutum is perhaps controlled by nutrients, where larger specimens may have preferred the more fertile palaeoenvironment of the Late Cenomanian. The size decrease of Biscutum in the Turonian is probably related to reduced nutrient availability. The genus Prediscosphaera spp., may have favoured low‐fertility conditions, as its mean size increases in the Turonian. A worldwide decline of the frequency of Broinsonia spp. during the Cenomanian–Turonian transition implies that this genus is not solely controlled by the nutrient content. The size of Broinsonia spp. may have been therefore influenced by the latest Cenomanian warming event. The increase in sea‐surface temperature may have been unfavourable for Broinsonia spp. as reflected by decreasing mean size and frequency. □Calcareous nannofossils, biometry, morphometry, Oceanic Anoxic Event 2.  相似文献   

4.
The distribution pattern of calcareous nannofossils was analysed across the Middle-Late Jurassic transition in the French Subalpine Basin (south-eastern France). This basin is characterized in the hemipelagic-pelagic domain by a continuous sedimentary succession, allowing a good biostratigraphic resolution for this time interval. The nannofossil assemblages are consistently dominated by Watznaueria britannica. However, major changes in trophic and paleoenvironmental conditions are recorded across the Middle-Late Jurassic transition. An increase in marine primary productivity and cooling of surface waters is recorded across the Callovian-Oxfordian boundary, as already shown in the higher latitude setting of the eastern Paris Basin. Increased precipitation and runoff under contrasting seasonal climatic conditions (monsoon-type) has led to eutrophication of marine surface waters in the French Subalpine Basin at this period. Then, decreased runoff and associated nutrients certainly linked to drier climatic conditions lead to a decrease in calcareous nannofossil productivity during the middle part of the Early Oxfordian (mariae-cordatum ammonite Zone transition). At the Early-Middle Oxfordian transition, more favourable conditions for the nannofossil community (warmer and mesotrophic surface waters) prevailed. The pelagic (nannofossil) carbonate contribution is limited, and the carbonate fraction is predominantly of nektonic/benthic origin at the Callovian-Oxfordian transition and of allochthonous origin from carbonate platforms at the Early Oxfordian-Middle Oxfordian transition.  相似文献   

5.
A high resolution calcareous nannofossil study associated with a geochemical analysis (major, trace elements, and carbon and oxygen isotope stratigraphies) was carried out in the Angles section (hemipelagic setting of the Vocontian basin, SE France) during the Valanginian positive carbon isotope excursion. The behaviour of calcareous nannofossil taxa in relation to fertility conditions was studied to elaborate new nutrient indices in this environment: a high nutrient index based on Biscutum spp., Discorhabdus rotatorius, Zeugrhabdotus fissus, (high fertility indicators) and Watznaueria barnesae (low fertility indicator); and a medium nutrient index based on Lithraphidites carniolensis (medium fertility indicator) and W. barnesae (low fertility indicator). These two indices show a major fertilization from the Stephanophorus ammonite Zone to the Trinodosum ammonite Zone, with a maximum during the positive carbon isotope excursion.Since high values of the nutrient indices are in phase with high values of chemical elements related to terrigenous material and low values of the coccolith total abundance, it is proposed that pulses of detrital inputs into the basin triggered the nutrification which, in turn, caused a biocalcification crisis of the calcareous nannofossils. Nutrification is also responsible for the reef demise in the surrounded platforms, as indicated by the increased Sr/Ca seawater ratio at that time.The intensification of the Paranà–Etendeka volcanic activity, triggering CO2 excess in the atmosphere, is probably responsible for an acceleration of the hydrological cycle, the increased weathering, and the subsequent higher terrigenous and nutrient transfer from continents to the Vocontian basin. In such a scenario, nutrification is a dominant factor controlling neritic and hemipelagic biocalcification. However, one cannot exclude that the global increase of atmospheric CO2 could generate chemical changes of the sea-surface waters, acting with the nutrification, to modify the biocalcification of the carbonate producers.  相似文献   

6.
JAN REES 《Palaeontology》2010,53(4):887-902
Abstract: Callovian and Oxfordian strata in Ogrodzieniec near Zawiercie, southern Poland, have yielded two shark tooth assemblages that collectively include 14 neoselachian taxa. A previously unrecognised member of the Orectolobiformes, Akaimia altucuspis gen. et sp. nov., is described and characterised by a dentition remarkably similar to modern wobbegong sharks (Orectolobidae) by convergence. The assemblages also include the first anterior teeth ever found of the palaeospinacid ‘Synechodusprorogatus Kriwet, in addition to teeth from two other palaeospinacids, Sphenodus spp., four different orectolobiforms, two hexanchids and Protospinax spp. These shark tooth assemblages contribute to the poorly known Callovian and Oxfordian neoselachian faunas and indicate that the diversity was higher than previously appreciated, particularly within the Orectolobiformes.  相似文献   

7.
Quantitative analyses of Pliensbachian calcareous nannofossils have been carried out on a proximal-distal transect in the Lusitanian Basin (Portugal). The studied sections Vale Venteiro near Tomar and Peniche represent proximal and distal environments with respect to the emerged land of the Iberian Meseta (to the East). The upper portion of the Vale das Fontes Fm (Davoei and Margaritatus ammonite Zones) is studied in both sections and correlated by means of ammonite and nannofossil integrated biostratigraphy. A careful analysis of the preservation state of nannofossils is performed. Preservation state is moderate to good in the two settings; changes in nannofossil assemblages are therefore considered as primary. Samples were analysed for nannofossil absolute and relative abundances, species diversity and wt%CaCO3. The analysis of calcareous nannofossils (absolute abundance, percentage, average abundance) shows changes in the community structure in space (i.e., from proximal to distal), and vertically within the water column. This pattern suggests a partitioning of habitats within the photic zone, and with respect to emerged lands. Proximal environments within the Lusitanian Basin were probably more eutrophic, because of the proximity of emerged lands to the East (Iberian Meseta). This was the source area for nutrients delivered into the basin by river transport. Distal environments were likely characterized by a greater water depth and by a deeper light penetration leading to a relatively more expanded photic zone. The assemblages recorded in the proximal setting exhibit high mean relative abundance of placolith-bearing coccolithophorids (Lotharingius spp., Biscutum spp. and Similiscutum spp.) and of Schizosphaerella spp., while distal assemblages are dominated by Crepidolithus crassus and Schizospharella spp. Crepidolithus crassus is interpreted as a deep-dweller coccolithophorid, inhabiting preferentially distal and deeper settings in the Lusitanian Basin. Placolith-bearing coccolithophorids were more abundant in proximal settings with respect to emerged lands, under relatively elevated trophic conditions. The probable calcareous dinocyst Schizospharella spp. proliferated in surface waters of both proximal and distal environments.  相似文献   

8.
The Cenomanian/Turonian boundary interval (CTBI) is marked by an intense climatic warming presumably caused by large magmatic eruptions. This warming was characterised by one of the most prominent Mesozoic perturbations of the carbon cycle, the Oceanic Anoxic Event 2 (OAE2), which is marked by a well pronounced positive carbon isotope excursion (CIE). Sediments of the OAE2-interval often consist of organic rich black shales suggesting widespread bottom water anoxia during the CTBI. This study focuses on calcareous nannofossils from the CTBI of a European section (Wunstorf Core; northwest Germany). A total of 105 samples were examined for calcareous nannofossils using the settling technique. Eight bioevents (last occurrences: Corollithion kennedyi, Lithraphidites acutus; first occurrences: Rotelapillus biarcus, Corollithion exiguum, Eprolithus octopetalus, Eprolithus eptapetalus, Quadrum gartneri, Eiffellithus eximius) have been recognised throughout the middle Cenomanian to middle Turonian interval. With the exception of eleven samples preservation is moderate to good. Calcareous nannofossils are abundant (mean 2.0 billion specimens/g sediment) and highly diverse (mean 58 species/sample). Assemblages are dominated by Watznaueria spp. (32.3%), Prediscosphaera spp. (13.4%), Zeugrhabdotus spp. (11.2%) and Biscutum spp. (10.5%). Pre-OAE2 and also post-OAE2 nannofossil assemblages show high abundances of Biscutum spp. (~ 20%) indicative for stable mesotrophic conditions. The assemblages of the OAE2 itself are marked by high values for Watznaueria spp. and low frequencies of Biscutum spp. making oligotrophic conditions during the OAE2 likely. High absolute abundances of organic walled dinoflagellates and the occurrence of frequent stress tolerant nannofossil genera like Retecapsa spp. in the organic rich intervals suggest, however, a deposition of black shales enhanced by high primary productivity. Thus dinoflagellates and calcareous nannofossils are interpreted to reflect different seasonal signals during the time of black shale deposition. Short-term high fertile seasons allowed the blooming of the organic walled dinoflagellates whereas calcareous nannofossils dominated the longer oligotrophic seasons. The black shale deposition was supported by the formation of large amounts of organic matter during fertile seasons as well as by surface water stagnation during oligotrophic seasons.  相似文献   

9.
The Gebel Qreiya and nearby Wadi Hamama sections of the central Eastern Desert are among the most complete K/T boundary sequences known from Egypt. The two sections were analyzed spanning an interval from l.83 Myr below to about 3 Myr above the K/T boundary. A 1-cm-thick red clay layer at the K/T boundary at Gebel Qreiya contains an Ir anomaly of 5.4 ppb. The high-resolution study and well-preserved nannoflora provide good age control and the first quantitative records of calcareous nannofossil assemblages for paleoecological interpretations across the K/T transition in Egypt. Four zones (Micula murus, Micula prinsii, NP1, and NP2) were distinguished and correlated with other nannofossil and planktonic foraminiferal zonations that are broadly applicable for the eastern Tethys region. Latest Maastrichtian assemblages are abundant and diverse, though Cretaceous species richness progressively decreased across the K/T boundary. Dominant species include Arkhangelskiella cymbiformis, Micula decussata and Watznaueria barnesae, with high abundance of dissolution-resistant M. decussata reflecting periods of high environmental stress. Thoracosphaera blooms mark the K/T boundary and are followed by an acme of the opportunistic survivor Braarudosphaera bigelowii, the first appearance of the new Tertiary species Cruciplacolithus primus, and an acme of Coccolithus cavus/pelagicus. These successive abundance peaks provide the basis for subdivision of the Early Danian Zones NP1 and NP2 into five subzones. Correlation of selected nannofossil taxa from the Egyptian sections with those from various onshore marine and deep-sea sections provides insights into their paleoenvironmental and paleoecological affinities.  相似文献   

10.
The early late Cretaceous (Cenomanian–early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian–Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian–Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany).A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian–Maastrichtian implies a change of the ocean circulation. The “eddy ocean” system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian–Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.  相似文献   

11.
A. V?r?s 《Facies》2012,58(3):415-443
The Villány area, as a central part of the Tisza microcontinent/terrane along the European margin of Tethys, was characterized by intense subsidence in the Early and Middle Triassic, followed by a long interruption of subsidence in the Late Triassic to Middle Jurassic. During the Middle–Late Jurassic transition, marine sedimentation started with three distinct sedimentary episodes dated as Late Bathonian, Early Callovian, and Middle–Late Callovian, respectively. The succession is terminated by a thick limestone of Middle Oxfordian age. The sedimentary features, microfacies, and macroinvertebrate associations of these four stratigraphic units are documented and illustrated. The Middle to Late Jurassic sedimentary episodes of the Villány succession record an interplay of local and global factors and paleogeographical changes. At the beginning, local tectonic movements governed the main features of sedimentation, though the role of eustasy was also essential. From the mid-Callovian onwards, global climatic, biotic, and paleoceanographical changes controlled the nature and formation of the local carbonate sediments. The Callovian stromatolites are attributed to the activity of sulphate-reducing bacteria in a deep sublittoral, current-swept environment. Upwelling of eutrophic Tethyan waters is recorded by the prevalence of the Bositra filament microfacies in the Callovian. The long submarine hiatus at around the Callovian–Oxfordian transition mirrors a serious restriction of the carbonate budget, due to sudden cooling and a change in the oceanic current system (opening of a circumglobal Tethyan Passage), and to a higher amount of dissolved CO2. In the Middle Oxfordian, the carbonate production considerably increased in accordance with the sudden global warming.  相似文献   

12.
Calcareous nannofossil assemblages have been investigated at Ocean Drilling Program (ODP) Site 1090 located in the modern Subantarctic Zone, through the Pleistocene Marine Isotope Stages (MIS) 34–29, between 1150 and 1000 ka. A previously developed age model and new biostratigraphic constraints provide a reliable chronological framework for the studied section and allow correlation with other records. Two relevant biostratigraphic events have been identified: the First Common Occurrence of Reticulofenestra asanoi, distinctly correlated to MIS 31–32; the re-entry of medium Gephyrocapsa at MIS 29, unexpectedly similar to what was observed at low latitude sites.The composition of the calcareous nannofossil assemblage permits identification of three intervals (I–III). Intervals I and III, correlated to MIS 34–32 and MIS 30–29 respectively, are identified as characteristic of water masses located south of the Subtropical Front and reflecting the southern border of Subantarctic Zone, at the transition with the Polar Front Zone. This evidence is consistent with the hypothesis of a northward shift of the frontal system in the early Pleistocene with respect to the present position and therefore a northernmost location of the Subantarctic Front. During interval II, which is correlated to MIS 31, calcareous nannofossil assemblages display the most significant change, characterized by a distinct increase of Syracosphaera spp. and Helicosphaera carteri, lasting about 20 ky. An integrated analysis of calcareous nannofossil abundances and few mineralogical proxies suggests that during interval II, Site 1090 experienced the influence of subtropical waters, possibly related to a southward migration of the Subtropical Front, coupled with an expansion of the warmer Agulhas Current at the core location. This pronounced warming event is associated to a minimum in the austral summer insolation. The present results provide a broader framework on the Mid-Pleistocene dynamic of the ocean frontal system in the Atlantic sector of the Southern Ocean, as well as additional evidence on the variability of the Indian–Atlantic ocean exchange.  相似文献   

13.
Massive sedimentation of mats of the diatom Thalassiothrix longissima forming laminated diatom mat deposits (LDM) occurred intermittently in the equatorial Pacific throughout the Neogene from at least 15 to 4.8 m.y. ago. The background deposition was otherwise calcareous nannofossil diatom ooze (NO). Benthic foraminifera have been used to reconstruct the benthic environment of deposition and the role of both surface waters (as a source of food) and bottom waters (including their corrosivity) during LDM deposition. Three LDM events were studied: Site 844 (11.4 Ma, early Tortonian), Site 849 (4.8 Ma, early Zanclian and 6.6–6.8 Ma, early Messinian). A control section of NO spanning the 4.8 Ma event was studied from Site 851. In addition, the carbonate high NO immediately preceding the 4.8 Ma event was examined in Site 849. From the foraminiferal evidence it can be shown that the LDM was deposited under conditions of normal oxygenation because infaunal taxa are present throughout and there was an increase in epifaunal taxa such as Cibicides spp. However, there was a reduction in test size probably because only those smaller than 250 μm were able to move through the restricted sediment pore spaces caused by the diatom mat meshwork. The rate of accumulation of tests is highest in LDM interval and may reflect reduced predation from macrofaunal endobenthos. Among the epifaunal taxa, Nuttallides spp. show a decrease in abundance in the LDM and even immediately preceding it. This may be linked to a greater influence of corrosive AABW. Species known to feed opportunistically on phytodetritus (Epistominella exigua and Alabaminella weddellensis) are common in both NO and LDM. The increased relative abundance of A. weddellensis in the LDM may be due to this species being smaller than E. exigua and better able to exploit the food resource within the restrictive mat meshwork. The foraminiferal results corroborate the previous interpretation that preservation of lamination in the LDM is due to the physical exclusion of macro endobenthos rather than oxygen depletion of the bottom waters.  相似文献   

14.
In order to assess Early Cretaceous nannoplankton biogeography, we studied a series of sites which provide a north–south transect across the Atlantic Ocean, supplemented by sections from the North Sea Basin, Barents Sea, Falkland Plateau, Weddell Sea (Antarctica), Argo Abyssal Plain (NW of Australia) and Neuquén Basin (Argentina). Quantitative assemblage data were gathered from each site for seven time-slices within the Berriasian to Barremian interval, each horizon being determined by a nannofossil datum. Trends in species relative abundance and measures of diversity, evenness and richness provide revealing biogeographic information. A broad, low- to mid-palaeolatitude zone (50°N–50°S) is flanked in both Northern and Southern Hemispheres by distinct high-palaeolatitude zones. Major changes in assemblage abundance and composition occur across a sharp biogeographic ‘front’ at around 50°N and S palaeolatitude. High-palaeolatitude assemblages are lower in species richness and diversity and characterised by the presence of abundant, typically bipolar, taxa (e.g. Crucibiscutum salebrosum). A less distinct biogeographic boundary at 40°N is distinguished by the presence/absence of rarer, but biogeographically significant, taxa, many of which have previously been assigned to Boreal or Tethyan provinces. Continental shelf sites are characterised by lower-diversity assemblages with common to dominant diagnostic taxa, which vary with palaeolatitude: Nannoconus and Micrantholithus at low palaeolatitudes, and Biscutum constans and Zeugrhabdotus spp. at higher palaeolatitudes. The latter two taxa are considered to be indicative of elevated surface-water fertility and the former two may have been similarly adapted. The genus Watznoueria is ubiquitously dominant, giving the populations an unevenness, which appears to be a common feature throughout coccolithophore history.  相似文献   

15.
《Marine Micropaleontology》2006,60(3):205-225
The coccolithophore species Watznaueria britannica is dominant in Middle-Upper Jurassic calcareous nannofossil assemblages and presents morphological variation, including different coccolith size, shape and length of the central area and of the bridge. Six morphotypes can be recognized in the polarizing light microscope. The aim of this work is to better understand the morphological variability of W. britannica and determine if this variability is controlled by paleoecological factors. In order to investigate the potential paleoecological controls on W. britannica morphology and abundance, we carried out a biometric study on a restricted temporal interval: the Late Oxfordian, in the Swabian Alb (southern Germany), characterized by increasing carbonate production linked to climatic changes. The Balingen–Tieringen section, where previous works on sedimentology, nannofossil assemblage composition, and δ18O and δ13C analyses were performed, was selected for this study. The variations in morphology and abundances of W. britannica were studied on 40 samples of the Balingen–Tieringen section, presenting variable lithologies and calcium carbonate contents. For each level, seven biometric parameters (coccolith length, width and ellipticity, central area length, width and ellipticity and central area proportion with respect to the coccolith) were measured or calculated on digitally captured images of the first 100 W. britannica coccoliths observed in the light microscope. The relationships between the different biometric variables were described using bivariate and Principal Component Analyses. Biometric parameters and Principal Component factors extracted from nannofossil assemblages as well as other paleoenvironmental proxies, were investigated using regression, and their stratigraphic trends were compared. Principal component analysis of the six biometric variables (3938 measurements) on W. britannica coccoliths shows a reduced morphological variability compared to a significant size gradient. An allometric trend recognized on the total placolith and on the central area within the W. britannica assemblages suggests that the different morphotypes may represent intra-specific variability rather than different species. The general trend through Late Oxfordian shows an increase in size of W. britannica coccoliths, mainly driven by an increase in the contribution of the large morphotypes. Increasing placolith size is associated with drier and warmer climatic conditions during the latest Oxfordian.  相似文献   

16.
Organic-walled dinoflagellate cyst (dinocyst) and geochemical records across the Cenomanian–Turonian boundary (CTB) are presented for the NW European reference section at Eastbourne, England. Dinocyst and nannofossil fertility indexes indicate that an upwelling-driven productivity pulse accompanied a eustatic sea-level fall that preceded, by at least 40 kyr, the global rise in δ13C values that marks the onset of Oceanic Anoxic Event 2 (OAE2) and the deposition of black shales in the deep ocean. A marine productivity collapse in the latest Cenomanian is evidenced by the falling absolute and relative abundance of peridinioid dinocysts, believed to be the product of heterotrophic dinoflagellates. This biotic change accompanied transgression and sharply rising sea-surface temperatures, following an Atlantic-wide episode of short-lived cooling. Geochemical tracers provide evidence of Caribbean–Colombian plateau volcanism. The increase in water depth caused by the latest Cenomanian transgression resulted in less eutrophic waters in epicontinental seas, where CTB biotic turnover was driven largely by water-mass changes rather than oxygen depletion. The species richness/absolute abundance ratio of dinocysts is proposed as a water-mass stability proxy.  相似文献   

17.
The latest Cretaceous (Campanian–Maastrichtian) is characterized by several global cooling and intermittent warming events. These climatic changes influenced the palaeoceanography substantially, including changes of the deep water sources and surface water currents. One of the most prominent episodes of climatic cooling occurred during the Campanian–Maastrichtian transition. This study focuses on the palaeoclimate and palaeoceanography of the Campanian–Maastrichtian transition by analysing the calcareous nannofossils of DSDP Hole 390A (139.92–126.15 mbsf; Blake Nose). For the examination of calcareous nannofossils sixty samples were processed using the settling technique. Biostratigraphical index taxa (Broinsonia parca constricta, Uniplanarius trifidus, and Tranolithus orionatus) suggest a late Campanian age for the major part of the studied section. The calcareous nannofossils are well preserved, highly abundant (6.80 billion specimens/gram sediment) and diverse (80 species/sample). The assemblages are dominated by Prediscosphaera spp. (20.5%), Watznaueria spp. (20.3%) and Retecapsa spp. (9.8%). Cool water taxa (Ahmuellerella octoradiata, Gartnerago segmentatum, and Kamptnerius magnificus), however, appear less frequently and do not exceed more than 1%. Due to their rarity these cool water taxa do not support the existence of an intense cooling phase during the Campanian–Maastrichtian transition at DSDP Hole 390A. Around 133 mbsf several nannofossil taxa, however, show a distinctive turnover. Mesotrophic species like Discorhabdus ignotus, Zeugrhabdotus bicrescenticus and Zygodiscus exmouthiensis are abundant below 133 mbsf, whereas oligotrophic taxa like Watznaueria spp., Eiffellithus spp. and Staurolithites flavus become common above this level. These changes imply a decrease in the input of nutrients, perhaps caused by a reorganization of ocean currents (Palaeo Gulf Stream) and reduced upwelling.  相似文献   

18.
We characterized the physical/chemical conditions and the algal and bacterial assemblages in ballast water from 62 ballast tanks aboard 28 ships operated by the U.S. Military Sealift Command and the Maritime Administration, sampled at 9 ports on the U.S. West Coast and 4 ports on the U.S. East Coast. The ballast tank waters had been held for 2–176 days, and 90% of the tanks had undergone ballast exchange with open ocean waters. Phytoplankton abundance was highly variable (grand mean for all tanks, 3.21 × 104 viable cells m−3; median, 7.9 × 103 cells m−3) and was unrelated to physical/chemical parameters, except for a positive relationship between centric diatom abundance and nitrate concentration. A total of 100 phytoplankton species were identified from the ballast tanks, including 23 potentially harmful taxa (e.g. Chaetoceros concavicornis, Dinophysis acuminata, Gambierdiscus toxicus, Heterosigma akashiwo, Karlodinium veneficum, Prorocentrum minimum, Pseudo-nitzschia multiseries). Assemblages were dominated by chain-forming diatoms and dinoflagellates, and viable organisms comprised about half of the total cells. Species richness was higher in ballast tanks with coastal water, and in tanks containing Atlantic or Pacific Ocean source waters rather than Indian Ocean water. Total and viable phytoplankton numbers decreased with age of water in the tanks. Diversity also generally decreased with water age, and tanks with ballast water age >33 days did not produce culturable phytoplankton. Abundance was significantly higher in tanks with recently added coastal water than in tanks without coastal sources, but highly variable in waters held less than 30 days. Bacterial abundance was significantly lower in ballast tanks with Atlantic than Pacific Ocean source water, but otherwise was surprisingly consistent among ballast tanks (overall mean across all tanks, 3.13 ± 1.27 × 1011 cells m−3; median, 2.79 × 1011 cells m−3) and was unrelated to vessel type, exchange status, age of water, environmental conditions measured, or phytoplankton abundance. At least one of four pathogenic eubacteria (Listeria monocytogenes, Escherichia coli, Mycobacterium spp., Pseudomonas aeruginosa) was detected in 48% of the ballast tanks, but toxigenic strains of Vibrio cholerae were not detected. For ships with tanks of similar ballasting history, the largest source of variation in phytoplankton and bacteria abundance was among ships; for ships with tanks of differing ballasting histories, and for all ships/tanks considered collectively, the largest source of variation was within ships. Significant differences in phytoplankton abundance, but not bacterial abundance, sometimes occurred between paired tanks with similar ballasting history; hence, for regulatory purposes phytoplankton abundance cannot be estimated from single tanks only. Most tanks (94%) had adequate records to determine the source locations and age of the ballast water and, as mentioned, 90% had had ballast exchange with open-ocean waters. Although additional data are needed from sediments that can accumulate at the bottom of ballast tanks, the data from this water-column study indicate that in general, U.S. Department of Defense (DoD) ships are well managed to minimize the risk for introduction of harmful microbiota. Nevertheless, abundances of viable phytoplankton with maximum dimension >50 μm exceeded proposed International Maritime Organization standards in 47% of the ballast tanks sampled. The data suggest that further treatment technologies and/or alternative management strategies will be necessary to enable DoD vessels to comply with proposed standards.  相似文献   

19.
Oxygen and carbon isotope data of well-preserved belemnite rostra and ammonite shells are presented from the Callovian–Oxfordian boundary (uppermost Lamberti to lowermost Cordatum zones) of the Dubki section near Saratov in the Russian Platform. Palaeotemperatures calculated for nektobenthic belemnites (averages of 5 °C and 8 °C for cylindroteuthids and belemnopseids, respectively) show the presence of cold bottom waters in the central part of the Middle Russian Sea during the studied interval. Palaeotemperatures calculated for ammonites, which are assumed to have lived in near-surface waters, are considerably higher (average 13 °C). The presented data show a vertical thermal gradient in the Middle Russian Sea. The belemnite oxygen isotope record and the relative abundances of ammonite families in the Dubki section do not correlate with each other probably as a result of different depth habitats of ammonites and belemnites. A review of literature isotope data shows the climatic zonation in European seas at the Middle–Late Jurassic transition. Despite the flux of cold polar waters to the Middle Russian Sea and the area of Scotland there is no evidence for glaciation at the Middle–Late Jurassic transition. Changes in water circulation during a sea-level highstand were likely a source of spreads of cold bottom waters and cardioceratid ammonite fauna in this time period.The belemnite isotope record of the Callovian–Oxfordian boundary in the Russian Platform is characterized by significant scatter of δ13C values. No temporal carbon isotope trend is observed. The δ13C values of Russian belemnite rostra average 2.6‰ VPDB being 1 to 2‰ higher than the values of coeval Lower Oxfordian belemnites from the area of the Submediterranean ammonite province. Higher (than Submediterranean) δ13C values of Russian belemnite rostra are likely related to high biologic productivity and/or high organic matter burial in semi-isolated Boreal–Subboreal marine basins.  相似文献   

20.
Several cores recovered from the northern belt of the Southern Ocean were analysed to study the Pleistocene calcareous nannofossil records. Calcareous nannofossil events previously described in medium and low latitudes were identified and calibrated with the oxygen isotope and geomagnetic time scales. Although sedimentation rates, hiatuses and degree of calcareous nannofossil preservation sometimes prevent the identification and/or accurate calibration of some of these events, a useful stratigraphic framework was obtained. The possibility of using these calibrated events from high to low latitudes facilitates correlations and should facilitate isotope event identification in a region with low temperature, where calcareous plankton stratigraphies are in general restricted. In general, Pleistocene southern high latitude calcareous nannofossil events show synchronism with those observed in warm and temperate surficial waters. Small discrepancies in the assigned ages are sometimes related to low sampling resolution due to low sedimentation rates. The first occurrence (FO) of Emiliania huxleyi and the last occurrence (LO) of Pseudoemiliania lacunosa are observed in Marine Isotope Stages (MIS) 8 and 12, respectively. A reversal in abundance between Gephyrocapsa muellerae and E. huxleyi is observed close to the MIS 4/5 boundary. MIS 6 is characterised by an increase in G. muellerae and MIS 7 features a dramatic decrease in the proportion of Gephyrocapsa caribbeanica. This latter species began to increase its proportions from the MIS 13/14 boundary to MIS13, showing diachronism between the different sites. The LO of Reticulofenestra asanoi is observed at MIS 22, confirming this event as a global synchronous reference datum. By contrast, the FO of R. asanoi occurs at MIS 35 and is diachronous with the existing data from other oceanic regions. A re-entry of medium sized Gephyrocapsa (3–5 μm maximum diameters) can be identified in some cores close to MIS 25; although the low abundance of this taxon prevents an accurate calibration, it may be concluded that this event is diachronous as compared with the existing low-latitude data. The LO of large morphotypes of Gephyrocapsa is well correlated with MIS 37, showing synchronism with other oceanic regions, whereas the FO of this species is not well calibrated due to the absence of age-control points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号