首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tom40 is the central pore-forming component of the translocase of the outer mitochondrial membrane (TOM complex). Different views exist about the secondary structure and electrophysiological characteristics of Tom40 from Saccharomyces cerevisiae and Neurospora crassa. We have directly compared expressed and renatured Tom40 from both species and find a high content of beta-structure in circular dichroism measurements in agreement with refined secondary structure predictions. The electrophysiological characterization of renatured Tom40 reveals the same characteristics as the purified TOM complex or mitochondrial outer membrane vesicles, with two exceptions. The total conductance of the TOM complex and outer membrane vesicles is twofold higher than the total conductance of renatured Tom40, consistent with the presence of two TOM pores. TOM complex and outer membrane vesicles possess a strongly enhanced sensitivity to a mitochondrial presequence compared to Tom40 alone, in agreement with the presence of several presequence binding sites in the TOM complex, suggesting a role of the non-channel Tom proteins in regulating channel activity.  相似文献   

2.
Mitochondria cannot be made de novo. Mitochondrial biogenesis requires that up to 1000 proteins are imported into mitochondria, and the protein import pathway relies on hetero-oligomeric translocase complexes in both the inner and outer mitochondrial membranes. The translocase in the outer membrane, the TOM complex, is composed of a core complex formed from the β-barrel channel Tom40 and additional subunits each with single, α-helical transmembrane segments. How α-helical transmembrane segments might be assembled onto a transmembrane β-barrel in the context of a membrane environment is a question of fundamental importance. The master receptor subunit of the TOM complex, Tom20, recognizes the targeting sequence on incoming mitochondrial precursor proteins, binds these protein ligands, and then transfers them to the core complex for translocation across the outer membrane. Here we show that the transmembrane segment of Tom20 contains critical residues essential for docking the Tom20 receptor into its correct environment within the TOM complex. This crucial docking reaction is catalyzed by the unique assembly factor Mim1/Tom13. Mutations in the transmembrane segment that destabilize Tom20, or deletion of Mim1, prevent Tom20 from functioning as a receptor for protein import into mitochondria.  相似文献   

3.
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.  相似文献   

4.
Translocation of preproteins across the mitochondrial outer membrane is mediated by the TOM complex. This complex consists of receptor components for the initial contact with preproteins at the mitochondrial surface and membrane-embedded proteins which promote transport and form the translocation pore. In order to understand the interplay between the translocating preprotein and the constituents of the TOM complex, we analyzed the dynamics of the TOM complex of Neurospora crassa and Saccharomyces cerevisiae mitochondria by following the structural alterations of the essential pore component Tom40 during the translocation of preproteins. Tom40 exists in a homo-oligomeric assembly and dynamically interacts with Tom6. The Tom40 assembly is influenced by a block of negatively charged amino acid residues in the cytosolic domain of Tom22, indicating a cross-talk between preprotein receptors and the translocation pore. Preprotein binding to specific sites on either side of the outer membrane (cis and trans sites) induces distinct structural alterations of Tom40. To a large extent, these changes are mediated by interaction with the mitochondrial targeting sequence. We propose that such targeting sequence-induced adaptations are a critical feature of translocases in order to facilitate the movement of preproteins across cellular membranes.  相似文献   

5.
The mitochondrial outer membrane contains a multi-subunit machinery responsible for the specific recognition and translocation of precursor proteins. This translocase of the outer membrane (TOM) consists of three receptor proteins, Tom20, Tom22 and Tom70, the channel protein Tom40, and several small Tom proteins. Single-particle electron microscopy analysis of the Neurospora TOM complex has led to different views with two or three stain-filled centers resembling channels. Based on biochemical and electron microscopy studies of the TOM complex isolated from yeast mitochondria, we have discovered the molecular reason for the different number of channel-like structures. The TOM complex from wild-type yeast contains up to three stain-filled centers, while from a mutant yeast selectively lacking Tom20, the TOM complex particles contain only two channel-like structures. From mutant mitochondria lacking Tom22, native electrophoresis separates an approximately 80 kDa subcomplex that consists of Tom40 only and is functional for accumulation of a precursor protein. We conclude that while Tom40 forms the import channels, the two receptors Tom22 and Tom20 are required for the organization of Tom40 dimers into larger TOM structures.  相似文献   

6.
The Tom20 and Tom22 receptor subunits of the TOM (translocase of the outer mitochondrial membrane) complex recognize N-terminal presequences of proteins that are to be imported into the mitochondrion. In plants, Tom20 is C-terminally anchored in the mitochondrial membrane, whereas Tom20 is N-terminally anchored in animals and fungi. Furthermore, the cytosolic domain of Tom22 in plants is smaller than its animal/fungal counterpart and contains fewer acidic residues. Here, NMR spectroscopy was used to explore presequence interactions with the cytosolic regions of receptors from the plant Arabidopsis thaliana and the fungus Saccharomyces cerevisiae (i.e., AtTom20, AtTom22, and ScTom22). It was found that AtTom20 possesses a discontinuous bidentate hydrophobic binding site for presequences. The presequences on plant mitochondrial proteins comprise two or more hydrophobic binding regions to match this bidentate site. NMR data suggested that while these presequences bind to ScTom22, they do not bind to AtTom22. AtTom22, however, binds to AtTom20 at the same binding site as presequences, suggesting that this domain competes with the presequences of imported proteins, thereby enabling their progression along the import pathway.  相似文献   

7.
The translocase of the outer mitochondrial membrane (TOM) complex is the main entry gate for proteins imported into mitochondria. We determined the structure of the native, unstained ∼ 550-kDa core-Tom20 complex from Saccharomycescerevisiae by cryo-electron microscopy at 18-Å resolution. The complex is triangular, measuring 145 Å on edge, and has near-3-fold symmetry. Its bulk is made up of three globular ∼ 50-Å domains. Three elliptical pores on the c-face merge into one central ∼ 70-Å cavity with a cage-like assembly on the opposite t-face. Nitrilotriacetic acid-gold labeling indicates that three Tom22 subunits in the TOM complex are located at the perimeter of the complex near the interface of the globular domains. We assign Tom22, which controls complex assembly, to three peripheral protrusions on the c-face, while the Tom20 subunit is tentatively assigned to the central protrusion on this surface. Based on our three-dimensional map, we propose a model of transient interactions and functional dynamics of the TOM assembly.  相似文献   

8.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

9.
The mitochondrial outer membrane contains two translocase machineries for precursor proteins—the translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The TOM complex functions as the main mitochondrial entry gate for nuclear-encoded proteins, whereas the SAM complex was identified according to its function in the biogenesis of β-barrel proteins of the outer membrane. The SAM complex is required for the assembly of precursors of the TOM complex, including not only the β-barrel protein Tom40 but also a subset of α-helical subunits. While the interaction of β-barrel proteins with the SAM complex has been studied in detail, little is known about the interaction between the SAM complex and α-helical precursor proteins. We report that the SAM is not static but that the SAM core complex can associate with different partner proteins to form two large SAM complexes with different functions in the biogenesis of α-helical Tom proteins. We found that a subcomplex of TOM, Tom5-Tom40, associates with the SAM core complex to form a new large SAM complex. This SAM-Tom5/Tom40 complex binds the α-helical precursor of Tom6 after the precursor has been inserted into the outer membrane in an Mim1 (mitochondrial import protein 1)-dependent manner. The second large SAM complex, SAM-Mdm10 (mitochondrial distribution and morphology protein), binds the α-helical precursor of Tom22 and promotes its membrane integration. We suggest that the modular composition of the SAM complex provides a flexible platform to integrate the sorting pathways of different precursor proteins and to promote their assembly into oligomeric complexes.  相似文献   

10.
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.  相似文献   

11.
Biogenesis of the translocase of the outer mitochondrial membrane (TOM complex) involves the assembly of the central β-barrel forming protein Tom40 with six different subunits that are embedded in the membrane via α-helical transmembrane segments. The sorting and assembly machinery (SAM complex) of the outer membrane plays a central role in this process. The SAM complex mediates the membrane integration of β-barrel precursor proteins including Tom40. The small Tom proteins Tom5 and Tom6 associate with the precursor of Tom40 at the SAM complex at an early stage of the assembly process and play a stimulatory role in the formation of the mature TOM complex. A fraction of the SAM components interacts with the outer membrane protein mitochondrial distribution and morphology protein 10 (Mdm10) to form the SAM-Mdm10 machinery; however, different views exist on the function of the SAM-Mdm10 complex. We report here that the third small Tom protein, Tom7, plays an inhibitory role at two distinct steps in the biogenesis of the TOM complex. First, Tom7 plays an antagonistic role to Tom5 and Tom6 at the early stage of Tom40 assembly at the SAM complex. Second, Tom7 interacts with Mdm10 that is not bound to the SAM complex, and thus promotes dissociation of the SAM-Mdm10 complex. Since the SAM-Mdm10 complex is required for the biogenesis of Tom22, Tom7 delays the assembly of Tom22 with Tom40 at a late stage of assembly of the TOM complex. Thus, Tom7 modulates the biogenesis of topologically different proteins, the β-barrel forming protein Tom40 and Tom22 that contains a transmembrane α-helix.  相似文献   

12.
The translocase of the outer mitochondrial membrane (TOM) complex is the general entry site into the organelle for newly synthesized proteins. Despite its central role in the biogenesis of mitochondria, the assembly process of this complex is not completely understood. Mim1 (mitochondrial import protein 1) is a mitochondrial outer membrane protein with an undefined role in the assembly of the TOM complex. The protein is composed of an N-terminal cytosolic domain, a central putative transmembrane segment (TMS) and a C-terminal domain facing the intermembrane space. Here we show that Mim1 is required for the integration of the import receptor Tom20 into the outer membrane. We further investigated what the structural characteristics allowing Mim1 to fulfil its function are. The N- and C-terminal domains of Mim1 are crucial neither for the function of the protein nor for its biogenesis. Thus, the TMS of Mim1 is the minimal functional domain of the protein. We show that Mim1 forms homo-oligomeric structures via its TMS, which contains two helix-dimerization GXXXG motifs. Mim1 with mutated GXXXG motifs did not form oligomeric structures and was inactive. With all these data taken together, we propose that the homo-oligomerization of Mim1 allows it to fulfil its function in promoting the integration of Tom20 into the mitochondrial outer membrane.  相似文献   

13.
More than 70% of mitochondrial proteins utilize N-terminal presequences as targeting signals. Presequence interactions with redundant cytosolic receptor domains of the translocase of the outer mitochondrial membrane (TOM) are well established. However, after the presequence enters the protein-conducting Tom40 channel, the recognition events that occur at the trans side leading up to the engagement of the presequence with inner membrane-bound receptors are less well defined. Using a photoaffinity-labeling approach with modified presequence peptides, we identified Tom40 as a presequence interactor of the TOM complex. Utilizing mass spectrometry, we mapped Tom40''s presequence-interacting regions to both sides of the β-barrel. Analysis of a phosphorylation site within one of the presequence-interacting regions revealed altered translocation kinetics along the presequence pathway. Our analyses assess the relation between the identified presequence-binding region of Tom40 and the intermembrane space domain of Tom22. The identified presequence-interacting region of Tom40 is capable of functioning independently of the established trans-acting TOM presequence-binding domain during matrix import.  相似文献   

14.
The role of the mitochondrial protein receptor Tom22p in the interaction of pro-apoptotic protein Bax with yeast mitochondria was investigated. Co-immunoprecipitation assays showed that human Bax interacted with different TOM subunits, including Tom22p. Expression of the cytosolic receptor domain of human Tom22 increased Bax mitochondrial localization, but decreased the proportion of active Bax. BN-PAGE showed that the cytosolic domain of Tom22 interfered with the oligomerization of Bax. These data suggest that the interaction with the cytosolic domain of Tom22 helps Bax to acquire a conformation able to interact with the outer mitochondrial membrane.  相似文献   

15.
The preprotein translocase of the outer mitochondrial membrane (TOM) consists of a central β-barrel channel, Tom40, and six proteins with α-helical transmembrane segments. The precursor of Tom40 is imported from the cytosol by a pre-existing TOM complex and inserted into the outer membrane by the sorting and assembly machinery (SAM). Tom40 then assembles with α-helical Tom proteins to the mature TOM complex. The outer membrane protein Mim1 promotes membrane insertion of several α-helical Tom proteins but also affects the biogenesis of Tom40 by an unknown mechanism. We have identified a novel intermediate in the assembly pathway of Tom40, revealing a two-stage interaction of the precursor with the SAM complex. The second SAM stage represents assembly of Tom5 with the precursor of Tom40. Mim1-deficient mitochondria accumulate Tom40 at the first SAM stage like Tom5-deficient mitochondria. Tom5 promotes formation of the second SAM stage and thus suppresses the Tom40 assembly defect of mim1Δ mitochondria. We conclude that the assembly of newly imported Tom40 is directly initiated at the SAM complex by its association with Tom5. The involvement of Mim1 in Tom40 biogenesis can be largely attributed to its role in import of Tom5.  相似文献   

16.
17.
The mitochondrial outer membrane contains two protein translocators: the TOM40 and TOB/SAM complexes. Mdm10 is distributed in the TOB complex for β‐barrel protein assembly and in the MMM1 complex for tethering of the endoplasmic reticulum and mitochondria. Here, we establish a system in which the Mdm10 level in the TOB complex—but not in the MMM1 complex—is altered to analyse its part in β‐barrel protein assembly. A decrease in the Mdm10 level results in accumulation of in vitro imported Tom40, which is a β‐barrel protein, at the level of the TOB complex. An increase in the Mdm10 level inhibits association not only of Tom40 but also of other β‐barrel proteins with the TOB complex. These results show that Mdm10 regulates the timing of release of unassembled Tom40 from the TOB complex, to facilitate its coordinated assembly into the TOM40 complex.  相似文献   

18.
β-Barrel membrane proteins have regular structures with extensive hydrogen-bond networks between their transmembrane (TM) β-strands, which stabilize their protein fold. Nevertheless, weakly stable TM regions, which are important for the protein function and interaction with other proteins, exist. Here, we report on the apparent stability of human Tom40A, a member of the “mitochondrial porin family” and main constituent of the mitochondrial protein-conducting channel TOM (translocase of the outer membrane). Using a physical interaction model, TmSIP, for β-barrel membrane proteins, we have identified three unfavorable β-strands in the TM domain of the protein. Substitution of key residues inside these strands with hydrophobic amino acids results in a decreased sensitivity of the protein to chemical and/or thermal denaturation. The apparent melting temperature observed when denatured at a rate of 1 °C per minute is shifted from 73 to 84 °C. Moreover, the sensitivity of the protein to denaturant agents is significantly lowered. Further, we find a reduced tendency for the mutated protein to form dimers. We propose that the identified weakly stable β-strands 1, 2 and 9 of human Tom40A play an important role in quaternary protein-protein interactions within the mammalian TOM machinery. Our results show that the use of empirical energy functions to model the apparent stability of β-barrel membrane proteins may be a useful tool in the field of nanopore bioengineering.  相似文献   

19.
The TOM (translocase of the outer mitochondrial membrane) complex of the outer mitochondrial membrane is required for the import of proteins into the organelle. The core TOM complex contains five proteins, including three small components Tom7, Tom6, and Tom5. We have created single and double mutants of all combinations of the three small Tom proteins of Neurospora crassa. Analysis of the mutants revealed that Tom6 plays a major role in TOM complex stability, whereas Tom7 has a lesser role. Mutants lacking both Tom6 and Tom7 have an extremely labile TOM complex and are the only class of mutant to exhibit an altered growth phenotype. Although single mutants lacking N. crassa Tom5 have no apparent TOM complex abnormalities, studies of double mutants lacking Tom5 suggest that it also has a minor role in maintaining TOM complex stability. Our inability to isolate triple mutants supports the idea that the three proteins have overlapping functions. Mitochondria lacking either Tom6 or Tom7 are differentially affected in their ability to import different precursor proteins into the organelle, suggesting that they may play roles in the sorting of proteins to different mitochondrial subcompartments. Newly imported Tom40 was readily assembled into the TOM complex in mitochondria lacking any of the small Tom proteins.  相似文献   

20.
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号