首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three species of botryosphaeriaceous fungi,Botryosphaeria sp. isolate MAMB-5,Botryosphaeria ribis andLasiodiplodia theobromae, were compared for the production of pycnidia and laccases. Laccases were produced both intra- and extra-cellularly when the fungi were cultivated on basal medium in the presence and absence of veratryl alcohol, withBotryosphaeria sp. MAMB-5 showing the highest enzyme titres. Electrophoretic examination of intracellular marker proteins (esterases and phosphatases) and laccases indicated that the three species were genetically distinctly different, although the laccase zymograms for the three fungi showed similarity. The production of pycnidia occurred under continuous lighting at 28°C, but conditions differed among the three fungal species. Production could be induced on artificial media (potato-dextrose and oat agar) under stress-induced conditions where the mycelium was stimulated by physical abrasion, and in the case ofBotryosphaeria sp. isolate MAMB-5 on eucalypt woodchips. Evidence is presented that veratryl alcohol facillitated the secretion of intracellular-localised laccases into the extracellular medium.  相似文献   

2.
The present study is the first describing the sequencing of a fragment of the copper-oxidase domain of a laccase gene in the family Botryosphaeriaceae. The aim of this work was to assess the degree of genetic and evolutionary relationships of a laccase gene from Botryosphaeria rhodina MAMB-05 with other ascomycete and basidiomycete laccase genes. The 193-amino acid sequences of the copper-oxidase domain from several different fungi, insects, a plant, and a bacterial species were retrieved from GenBank and aligned. Phylogenetic analyses were performed using neighbor-joining, maximum parsimony, and Bayesian inference methods. The organisms studied clustered into five gene clades: fungi (ascomycetes and basidiomycetes), insects, plants, and bacteria. Also, the topologies showed that fungal laccases of the ascomycetes and basidiomycetes are clearly separated into two distinct clusters. This evidence indicated that B. rhodina MAMB-05 and other closely related ascomycetes are a new biological resource given the biotechnological potential of their laccase genes.  相似文献   

3.
The potential of Bacillus SF spore laccase for coupling aromatic amines to lignin model molecules as a way of creating a stable reactive surface was investigated. The Bacillus spore laccase was shown to be active within the neutral to alkaline conditions (pH 7–8.5) and was more resistant to common laccase inhibitors than fungal laccases. Using this enzyme, tyramine was successfully covalently coupled onto syringylglycerol β-guaiacylether via a 4-O-5 bond, leaving the –NH2 group free for further attachment of functional molecules. This study demonstrates the potential of Bacillus SF spore laccase for application in lignocellulose surface functionalization and other coupling reactions which can be carried out at neutral to alkaline pH under extreme conditions which normally inhibit fungal laccases.  相似文献   

4.
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.  相似文献   

5.
The ascomycetous fungus, Botryosphaeria rhodina MAMB-05, secretes a (1→3)(1→6)-β-D-glucan, and the scaled-up production of this β-glucan results in large amounts of mycelial biomass being produced that represent a potentially cost-effective biosorbent for rare-earth elements. High sorption capacities for both La(III) and Sm(III) were demonstrated for viable and autoclaved lyophilized fungal mycelium. Fourier-transformed infra-red absorption spectra and the point of zero charge (PZC) were similar for the viable and inactive fungal mycelia. The rare-earth lanthanide elements (La and Sm) binding increased at initial pH values greater than 5.0, which was also observed for the PZC determination. The maximum La(III) uptake capacity was observed at lower amounts of La(III) ions in solution, decreasing from 100.0 to 25.3% when the initial lanthanide concentration increased from 15 to 100 mg/L. Lanthanide biosorption by B. rhodina MAMB-05 mycelia followed the Langmuir model, and the affinity of biosorbent functional groups was similar for La(III) and Sm(III).  相似文献   

6.
Cyathus bulleri, a ligninolytic fungus, produces a single laccase the internal peptides (3) of which bear similarity to laccases of several white rot fungi. Comparison of the total amino acid composition of this laccase with several fungal laccases indicated dissimilarity in the proportion of some basic and hydrophobic amino acids. Analysis of the circular dichroism spectrum of the protein indicated 37% alpha-helical, 26% beta-sheet and 38% random coil content which differed significantly from that in the solved structures of other laccases, which contain higher beta-sheet structures. The critical role of the carboxylic group containing amino acids was demonstrated by determining the kinetic parameters at different pH and this was confirmed by the observation that a critical Asp is strongly conserved in both Ascomycete and Basidiomycete laccases. The enzyme was denatured in the presence of a number of denaturing agents and refolded back to functional state with copper. In the folding experiments under alkaline conditions, zinc could replace copper in restoring 100% of laccase activity indicating the non-essential role of copper in this laccase. The laccase was expressed in Escherichia coli by a modification of the ligation-anchored PCR approach making it the first fungal laccase to be expressed in a bacterial host. The laccase sequence was confirmed by way of analysis of a 435 bp sequence of the insert.  相似文献   

7.
Fimbria-mediated bacterial adhesion to human oral epithelium   总被引:1,自引:0,他引:1  
The white-rot fungus Marasmius quercophilus C30 is able to produce several laccases. The proportion of the enzymes produced depends on culture conditions. On malt medium, LAC1 was produced continuously over the 14 days of the cultivation period and was the only activity detectable. Copper increased total laccase activity by a factor 10 and induced the transient expression of one or more extra laccases in the culture medium. A combination of copper and p-hydroxybenzoic acid made it possible to extend the expression of induced laccase activities over the cultivation period and to reach a maximum activity 30 times higher than in non-induced culture. Extracellular laccases produced in this last condition were eluted as four peaks on an anion exchange column and were partially characterized.  相似文献   

8.
White-rot basidiomycete Cerrena unicolor grown in non-induced and induced conditions was tested for production of laccase, lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP). A typical correlation between the concentration of phenolic compounds in the culture fluid and the extracellular laccase activity was observed. The heterogeneous crude laccase preparation obtained after the non-induced fermentor cultivation was immobilized both on controlled porosity glass (CPG) activated by γ-aminopropyltriethoxysilane (APTES) and on CPG with its surface covered by dextran layers. The laccase activities were tested in the aqueous solution for the native and immobilized preparations using different pH and temperature conditions. Laccase activities were additionally examined for native and immobilized forms of laccase preparations in the aqueous solution containing organic solvents. The greatest activity toward the substrate used in the presence of organic solvents was shown by the laccase preparation coupled with the CPG covered by a dextran layer. Potential inhibitors such as thioglycolic acid, thiourea and EDTA used in 1-mM concentration did not show inhibiting properties towards the laccase preparations.  相似文献   

9.
Laccase: new functions for an old enzyme   总被引:61,自引:0,他引:61  
Laccases occur widely in fungi; they have been characterized less frequently in higher plants. Here we have focused on more recent reports on the occurrence of laccase and its functions in physiological development and industrial utility. The reports of molecular weights, pH optima, and substrate specificity are extremely diverse. Conclusive proof of the occurrence of laccase in a tissue must demonstrate that the enzyme be able to oxidize quinol with concomitant uptake of oxygen. Laccase is involved in the pigmentation process of fungal spores, the regeneration of tobacco protoplasts, as fungal virulence factors, and in lignification of cell walls and delignification during white rot of wood. Commercially, laccases have been used to delignify woody tissues, produce ethanol, and to distinguish between morphine and codeine. A very wide variety of bioremediation processes employ laccase in order to protect the environment from damage caused by industrial effluents. Research in recent years has been intense, much of it elicited by the wide diversity of laccases, their utility and their very interesting enzymology.  相似文献   

10.
Two laccases have been purified to apparent electrophoretic homogeneity from the extracellular medium of a 2,5-xylidine-induced culture of the white rot basidiomycete Trametes villosa (Polyporus pinsitus or Coriolus pinsitus). These proteins are dimeric, consisting of two subunits of 63 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and have typical blue laccase spectral properties. Under nondenaturing conditions, the two purified laccases have different pIs; purified laccase forms 1 and 3 have pIs of 3.5 and 6 to 6.5, respectively. A third purified laccase form 2 has the same N terminus as that of laccase form 3, but its pI is in the range of 5 to 6. The laccases have optimal activity at pH 5 to 5.5 and pH < or = 2.7 with syringaldazine and ABTS [2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)] as substrates, respectively. The genes lcc1 and lcc2 coding for the two purified laccases (forms 1 and 3) have been cloned, and their nucleotide sequences have been determined. The genes for lcc1 and lcc2 have 8 and 10 introns, respectively. The predicted proteins are 79% identical at the amino acid level. From Northern (RNA) blots containing total RNA from both induced and uninduced cultures, expression of lcc1 is highly induced, while the expression of lcc2 appears to be constitutive. Lcc1 has been expressed in Aspergillus oryzae, and the purified recombinant protein has the same pI, spectral properties, stability, and pH profiles as the purified native protein.  相似文献   

11.
Improvement of the catalytic properties of fungal laccases is a current challenge for the efficient bioremediation of natural media polluted by xenobiotics. We developed the heterologous expression of a laccase from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica as a first step for enzyme evolution. The full-length cDNA consisted of a 1,561-bp open reading frame encoding lacIIIb, a 499-amino-acid protein and a 21-amino-acid signal peptide. Native and yeast secretion signals were used to direct the secretion of the enzyme, with the native signal yielding higher enzyme activity in the culture medium. The level of laccase activity secreted by the transformed yeast was similar to that observed for the non-induced wild-type strain of T. versicolor. The identity of the recombinant enzyme was checked by Western blot and matrix-assisted laser desorption/ionization time-of-flight analysis. Electrophoresis separation in native conditions indicated a molecular mass of the recombinant protein slightly higher (5 kDa) than that of the mature T. versicolor laccase IIIb, suggesting a limited excess of glycosylation. The laccase production level reached 2.5 mg/l (0.23 units/ml), which is suitable for engineering purpose.The two first authors have contributed equally to this work.  相似文献   

12.
Protein glycosylation, a major post-translational modification, plays essential roles in eukaryotic cells. The glycosylation of fungal laccases has been proposed to be the bottleneck for the heterologous production of the enzyme, so it is important to determine its structure and function. We describe here the detailed N-glycosylation profile of Pycnoporus sanguineus laccase and its influence on some of its enzymatic properties. In this enzyme only high mannose structures were found, being those with 5- and 8-mannose units the most abundant. No other type of sugars was found in contrast to other fungal laccases. Enzymatic cleavage of the N-glycans present in the laccase provoked slight changes in the kinetic parameters, in the thermal stability and in the pH optimum of the enzyme.  相似文献   

13.
The white-rot basidiomycete Physisporinus rivulosus strain T241i is highly selective for degradation of softwood lignin, which makes this fungus suitable for biopulping. In order to promote laccase production, P. rivulosus was cultivated in nutrient-nitrogen sufficient liquid media containing either charcoal or spruce sawdust as supplements. Two laccases with distinct pI values, Lac-3.5 and Lac-4.8, were purified from peptone-spruce sawdust-charcoal cultures of P. rivulosus. Both laccases showed thermal stability at up to 60°C. Lac-4.8 was thermally activated at 50°C. Surprisingly, both laccases displayed atypically low pH optima (pH 3.0–3.5) in oxidation of the commonly used laccase substrates syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine), 2,6-dimethoxyphenol and guaiacol (2-methoxyphenol). Steady-state kinetic measurements pointed to unusually low affinity to guaiacol at low pH, whereas the kinetic constants for the methoxyphenols and ABTS were within the ranges reported for other fungal laccases. The combination of thermotolerance with low pH optima for methoxylated phenol substrates suggests that the two P. rivulosus T241i laccases possess potential for use in biotechnological applications.  相似文献   

14.
Screening for novel laccase-producing microbes   总被引:4,自引:0,他引:4  
AIMS: To discover novel laccases potential for industrial applications. METHODS AND RESULTS: Fungi were cultivated on solid media containing indicator compounds that enabled the detection of laccases as specific colour reactions. The indicators used were Remazol Brilliant Blue R (RBBR), Poly R-478, guaiacol and tannic acid. The screening work resulted in isolation of 26 positive fungal strains. Liquid cultivations of positive strains confirmed that four efficient laccase producers were found in the screening. Biochemical characteristics of the four novel laccases were typical for fungal laccases in terms of molecular weight, pH optima and pI. The laccases showed good thermal stability at 60 degrees C. CONCLUSIONS: Plate-test screening based on polymeric dye compounds, guaiacol and tannic acid is an efficient way to discover novel laccase producers. The results indicated that screening for laccase activity can be performed with guaiacol and RBBR or Poly R-478. SIGNIFICANCE AND IMPACT OF THE STUDY: Laccases have many potential industrial applications including textile dye decolourization, delignification of pulp and effluent detoxification. It is essential to find novel, efficient enzymes to further develop these applications. This study showed that relatively simple plate test screening method can be used for discovery of novel laccases.  相似文献   

15.
The influence of different cultivation conditions on β-glucosidase production and of some parameters on the activity and stability of this enzyme were studied inNectria catalinensis. Maximal β-glucosidase production was achieved with ammonium nitrate (0.5 g N/L) as nitrogen source. Tween 80, Tween 20 and Triton X-100 increased β-glucosidase yields, Tween 80 was the most effective for enzyme release and growth at a concentration of 3.4 mmol/L. On the other hand, Tween 20 and Triton X-100 had an inhibitory effect onN. catalinensis growth. A temperature of 23°C and an initial pH of cultures of 6.5 were optimal for biomass and β-glucosidase production. Under optimal cultural conditions (ammonium nitrate, 0.5 g N/L; Tween 80, 3.4 mmol/L; 23°C; initial pH 6.5) the β-glucosidase yield was increased more than five fold respect to the initial state. Optimal temperature for β-glucosidase activity was 45°C, the initial activity dropped 60 % after 6 h of incubation at this temperature. Optimal pH for enzyme activity was 5.3. At this pH the β-glucosidase was completely stable after 3 d of incubation. TheV andK m values calculated from Lineweaver-Burk and Eadie-Hofstee plots were 0.23 μmol 4-nitrophenol per min per mg of protein and 0.25 mmol 4-nitrophenol β-d-glucopyranoside per L, respectively. The activation energy according to Arrhenius plot was 49.6 KJ/mol.  相似文献   

16.
The process parameters influencing the production of extracellular laccases by Streptomyces psammoticus MTCC 7334 were optimized in submerged fermentation. Coffee pulp and yeast extract were the best substrate and nitrogen source respectively for laccase production by this strain. The optimization studies revealed that the laccase yield was maximum at pH 7.5 and temperature 32 degrees C. Salinity of the medium was also observed to be influencing the enzyme production. An agitation rate of 175 rpm and 15% inoculum were the other optimized conditions for maximum laccase yield (5.9 U/mL). Pyrogallol and para-anisidine proved to be the best inducers for laccase production by this strain and the enzyme yield was enhanced by 50% with these inducers. S. psammoticus was able to decolourize various industrial dyes at different rates and 80% decolourization of Remazol Brilliant Blue R (RBBR) was observed after 10 days of incubation in dye based medium.  相似文献   

17.
A novel laccase from the ascomycete Melanocarpus albomyces was purified and characterised. The enzyme was purified using anion exchange chromatography, hydrophobic interaction chromatography and gel filtration, and the purified laccase was biochemically characterised. It had activity towards typical substrates of laccases including 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate), dimethoxyphenol, guaiacol, and syringaldazine. The laccase showed good thermostability and it had a pH optimum at neutral pH, both unusual properties for most known fungal laccases. The activity of the laccase from M. albomyces was highest at 60-70 degrees C. With guaiacol and syringaldazine the pH optima were rather broad: 5-7.5 and 6-7, respectively. It retained 50% of its activity after 5 h incubation at 60 degrees C. The molecular weight of the laccase was about 80 kDa and the isoelectric point 4.0. The ultraviolet-visible absorption and electron paramagnetic resonance spectra of the purified laccase indicated that the typical three types of copper were present.  相似文献   

18.
The kinetics of potassium triiodide (KI(3)) formation during fungal laccase action was investigated in presence of methyl syringate (MS). The recombinant forms of Polyporus pinsitus (rPpL), Myceliophthora thermophila (rMtL), Coprinus cinereus (rCcL), and Rhizoctonia solani (rRsL) laccases were used. The triiodide formation rate reached 6.1, 5.5, 6.0, and 2.1 microM/min at saturated rPpL, rCcL, rRsL, and rMtL concentration, respectively, in acetate buffer solution pH 5.5 and in presence of 10 microM of MS and 1 mM of potassium iodide. The triiodide formation rate increased if pH decreased from 6.5 to 4.5. The scheme of laccase-catalysed iodide oxidation includes stadium of MS interaction with oxidized laccase with concomitant production of MS(ox). The reaction of MS(ox) with iodide produced triiodide. The turnover number of MS was 93 and 44 at pH 5.5 for rPpL and rMtL, respectively. The scheme also contained a stadium of reversible reduction of laccase active centre with the mediator explaining the different saturation rate of triiodide production. The fitting kinetic data revealed that the reversibility of the reaction increased for laccases containing lower redox potential of copper type I.  相似文献   

19.
Laccases belong to multicopper oxidases and are widespread in nature. Currently, mainly fungal laccases are applied in biotechnological processes. One reason for this is that fungal laccases are much better studied. Compared to fungal laccases, bacterial laccases possess some advantageous characteristics like high stability at elevated temperatures and alkaline pH values. Intracellular recombinant expression of bacterial laccases in E. coli makes however downstream processing more complex and time-consuming compared to extracellular expression of fungal enzymes. Here, we demonstrate that cell disruption by cell thermolysis is an efficient and simple method for the isolation and partial purification of recombinant bacterial laccases. Three different laccases, Tth from Thermus thermophilus, CotA from Bacillus subtilis and Ssl1 from Streptomyces sviceus, were used to compare cell disruption by cell thermolysis with sonication and high-pressure homogenization, with and without subsequent heat treatment. Cell thermolysis resulted in high laccase activities per gram of cell wet weight and in the highest specific activities of the laccases. For example, specific activity of Tth laccase after cell thermolysis was 469-fold higher than after sonication. Furthermore, high decolorization activity towards indigo carmine and alizarin red S of these laccases, isolated via cell thermolysis, demonstrate their potential for technical applications.  相似文献   

20.
Laccases have numerous biotechnological applications, among them food processing. The widespread use of laccases has increased the demand for an inexpensive and safe source of recombinant enzyme. We explored the use of a rice-based system for the production of two fungal laccases derived from the ascomycete Melanocarpus albomyces and the basidiomycete Pycnoporus cinnabarinus. High-expression levels of active recombinant laccases were achieved by targeting expression to the endosperm of rice seeds. The laccase cDNAs were fused to a plant-derived signal sequence for targeting to the secretory pathway, and placed under the control of a constitutive seed-specific promoter fused to an intron for enhanced expression. This construct enabled the recovery of on average 0.1-1% of soluble laccase in total soluble proteins (TSP). The highest yields of recombinant laccases obtained in rice seeds were 13 and 39 ppm for riceMaL and ricePycL, respectively. The rice-produced laccases were purified and characterized. The wild-type and the recombinant proteins showed similar biochemical features in terms of molecular mass, pI, temperature and optimal pH and the N-terminus was correctly processed. Although presenting lower kinetic parameters, the rice-produced laccases were also suitable for the oxidative cross-linking of a food model substrate [maize-bran feruloylated arabinoxylans (AX)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号