首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European green crab Carcinus maenas is one of the world's most successful aquatic invaders, having established populations on every continent with temperate shores. Here we describe patterns of genetic diversity across both the native and introduced ranges of C. maenas and its sister species, C. aestuarii, including all known non‐native populations. The global data set includes sequences from the mitochondrial cytochrome c oxidase subunit I gene, as well as multilocus genotype data from nine polymorphic nuclear microsatellite loci. Combined phylogeographic and population genetic analyses clarify the global colonization history of C. maenas, providing evidence of multiple invasions to Atlantic North America and South Africa, secondary invasions to the northeastern Pacific, Tasmania, and Argentina, and a strong likelihood of C. maenas × C. aestuarii hybrids in South Africa and Japan. Successful C. maenas invasions vary broadly in the degree to which they retain genetic diversity, although populations with the least variation typically derive from secondary invasions or from introductions that occurred more than 100 years ago.  相似文献   

2.
3.
Non‐native invasive species are threatening ecosystems and biodiversity worldwide. High genetic variation is thought to be a critical factor for invasion success. Accordingly, the global invasion of a few clonal lineages of the gastropod Potamopyrgus antipodarum is thus both puzzling and has the potential to help illuminate why some invasions succeed while others fail. Here, we used SNP markers and a geographically broad sampling scheme (N = 1617) including native New Zealand populations and invasive North American and European populations to provide the first widescale population genetic assessment of the relationships between and among native and invasive P. antipodarum. We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages. One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario. The other widespread North American group had a more complex origin that included the other European lineage and two New Zealand clusters. Altogether, our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents. Our findings provide critical information for prevention of additional invasions and control of existing invasive populations and are of broader relevance towards understanding the establishment and evolution of asexual populations and the forces driving biological invasion.  相似文献   

4.
Biological invasions are typically the outcome of complex patterns of introduction, establishment, and spread, and genetic methods are excellent tools to resolve such histories for non-native organisms. The mealy plum aphid, Hyalopterus pruni, is an invasive pest of dried plum in California. We examined nine microsatellite loci and DNA sequences from three mitochondrial genes (1,148 bp) in populations throughout the native and invaded ranges of H. pruni to assess key invasion parameters, including geographic origins of invasive populations, number of introductions, and levels of genetic diversity and gene flow. Our results provide evidence for multiple invasions of H. pruni into North America, suggesting that aphids in California may have been introduced from Spain, and aphids in the eastern United States and Vancouver, Canada were likely introduced from central or northern Europe. H. pruni populations in California were characterized by low genetic diversity relative to native populations, while the two other North American populations were less genetically impoverished. Gene flow among introduced populations was low, but does appear to occur with some regularity. These findings provide a framework for more detailed studies of H. pruni, but also represent a model for how population genetics approaches can be used to study invasion biology and aid the development of optimized management methods for agricultural pests. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

6.
Aim To determine timing, source and vector for the recent introduction of the European green crab, Carcinus maenas (Linnaeus, 1758), to Newfoundland using multiple lines of evidence. Location Founding populations in Placentia Bay, Newfoundland, Canada and potential source populations in the north‐west Atlantic (NWA) and Europe. Methods We analysed mitochondrial and microsatellite genetic data from European and NWA populations sampled during 1999–2002 to determine probable source locations and vectors for the Placentia Bay introduction discovered in 2007. We also analysed Placentia Bay demographic data and shipping records to look for congruent patterns with genetic analyses. Results Demographic data and surveys suggested that C. maenas populations are established and were in Placentia Bay for several years (c. 2002) prior to discovery. Genetic data corroboratively suggested central/western Scotian Shelf populations (e.g., Halifax) as the likely source area for the anthropogenic introduction. These Scotian Shelf populations were within an admixture zone made up of genotypes from both the earlier (early 1800s) and later (late 1900s) introductions of the crab to the NWA from Europe. Placentia Bay also exhibited this mixed ancestry. Probable introduction vectors included vessel traffic and shipping, especially vessels carrying ballast water. Main conclusions Carcinus maenas overcame considerable natural barriers (i.e., coastal and ocean currents) via anthropogenic transport to become established and abundant in Newfoundland. Our study thus demonstrates how non‐native populations can be important secondary sources of introduction especially when aided by human transport. Inference of source populations was possible owing to the existence of an admixture zone in central/western Nova Scotia made up of southern and northern genotypes corresponding with the crab’s two historical introductions. Coastal vessel traffic was found to be a likely vector for the crab’s spread to Newfoundland. Our study demonstrates that there is considerable risk for continued introduction or reintroduction of C. maenas throughout the NWA.  相似文献   

7.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

8.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

9.
Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east‐central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas.  相似文献   

10.
Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring‐necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring‐necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences.  相似文献   

11.
Genetic admixture, the intraspecific hybridization among divergent introduced sources, can immediately facilitate colonization via hybrid vigor and profoundly enhance invasion via contributing novel genetic variation to adaption. As hybrid vigor is short‐lived, provisioning adaptation is anticipated to be the dominant and long‐term profit of genetic admixture, but the evidence for this is rare. We employed the 30 years' geographic‐scale invasion of the salt marsh grass, Spartina alterniflora, as an evolutionary experiment and evaluated the consequences of genetic admixture by combining the reciprocal transplant experiment with quantitative and population genetic surveys. Consistent with the documentation, we found that the invasive populations in China had multiple origins from the southern Atlantic coast and the Gulf of Mexico in the US. Interbreeding among these multiple sources generated a “hybrid swarm” that spread throughout the coast of China. In the northern and mid‐latitude China, natural selection greatly enhanced fecundity, plant height and shoot regeneration compared to the native populations. Furthermore, genetic admixture appeared to have broken the negative correlation between plant height and shoot regeneration, which was genetically‐based in the native range, and have facilitated the evolution of super competitive genotypes in the invasive range. In contrast to the evolved northern and mid‐latitude populations, the southern invasive populations showed slight increase of plant height and shoot regeneration compared to the native populations, possibly reflecting the heterotic effect of the intraspecific hybridization. Therefore, our study suggests a critical role of genetic admixture in accelerating the geographic invasion via provisioning rapid adaptive evolution.  相似文献   

12.
Carcinus maenas (Decapoda: Portunidae) has proven a highly successful invasive marine species whose potential economic and ecological impacts are of great concern worldwide. Here, we characterize 14 polymorphic microsatellite loci in C. maenas and its sister species Carcinus aestuarii. These markers will prove useful for fine‐scale genetic analyses of native and introduced populations, for assessment of the sources and routes of invasion and for evaluation of post‐invasion population dynamics.  相似文献   

13.
In water-limited ecosystems, where potential evapotranspiration exceeds precipitation, it is often assumed that plant invasions will not increase total ecosystem water use, because all available water is evaporated or transpired regardless of vegetation type. However, invasion by exotic species, with high water use rates, may potentially alter ecosystem water balance by reducing water available to native species, which may in turn impact carbon assimilation and productivity of co-occurring species. Here, we document the impact of invasion by an understory exotic woody species (Acacia longifolia) in a semi-arid Mediterranean dune pine forest. To quantify the effects of this understory leguminous tree on the water use and carbon fixation rates of Pinus pinaster we compare an invaded and a non-invaded stand. A. longifolia significantly altered forest structure by increasing plant density and leaf area index in the mid-stratum of the invaded forest. A. longifolia contributed significantly to transpiration in the invaded forest (up to 42%) resulting in a slight increase in stand transpiration in the invaded relative to non-invaded forest. More importantly, both water use and carbon assimilation rates of P. pinaster were significantly reduced in the invaded relative to non-invaded stand. Therefore, this study shows that exotic plant invasions can have significant impacts on hydrological and carbon cycling even in water-limited semi-arid ecosystems through a repartitioning of water resources between the native and the invasive species.  相似文献   

14.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   

15.
The success of invasive plant species is driven, in part, by feedback with soil ecosystems. Yet, how variation in belowground communities across latitudinal gradients affects invader distributions remains poorly understood. To determine the effect of soil communities on the performance of the noxious weed Cirsium arvense across its invaded range, we grew seedlings for 40 days in soils collected across a 699 km linear distance from both inside and outside established populations. We also described the mesofaunal and bacterial communities across all soil samples. We found that C. arvense typically performed better when grown in soils sourced from northern populations than from southern locations where it has a longer invasion history. We also found evidence that C. arvense performed best in soils sourced from outside invaded patches, although this was not consistent across all sites. The bacterial community showed a significant increase in the magnitude of compositional change in invaded sites at higher latitudes, while the mesofaunal community showed the opposite pattern. Bacterial community composition was significantly correlated with C. arvense performance, although mesofaunal community composition was not. Our results demonstrate that the interactions between an invasive plant and associated soil communities change across the invaded range, and the bacterial community in particular may affect variation in plant performance. Observed patterns may be caused by C.arvense presence and time since invasion allowing for an accumulation of species‐specific pathogens in southern soils, while the naïveté of northern soils to invasion results in a more responsive bacterial community. Although these interactions are difficult to predict, such effects could possibly facilitate the establishment of this exotic species to novel locations.  相似文献   

16.
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out‐ and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field‐collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species’ native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.  相似文献   

17.
Aim The use of species distribution models (SDMs) to predict biological invasions is a rapidly developing area of ecology. However, most studies investigating SDMs typically ignore prediction errors and instead focus on regions where native distributions correctly predict invaded ranges. We investigated the ecological significance of prediction errors using reciprocal comparisons between the predicted invaded and native range of the red imported fire ant (Solenopsis invicta) (hereafter called the fire ant). We questioned whether fire ants occupy similar environments in their native and introduced range, how the environments that fire ants occupy in their introduced range changed through time relative to their native range, and where fire ant propagules are likely to have originated. Location We developed models for South America and the conterminous United States (US) of America. Methods We developed models using the Genetic Algorithm for Rule‐set Prediction (GARP) and 12 environmental layers. Occurrence data from the native range in South America were used to predict the introduced range in the US and vice versa. Further, time‐series data recording the invasion of fire ants in the US were used to predict the native range. Results Native range occurrences under‐predicted the invasive potential of fire ants, whereas occurrence data from the US over‐predicted the southern boundary of the native range. Secondly, introduced fire ants initially established in environments similar to those in their native range, but subsequently invaded harsher environments. Time‐series data suggest that fire ant propagules originated near the southern limit of their native range. Conclusions Our findings suggest that fire ants from a peripheral native population established in an environment similar to their native environment, and then ultimately expanded into environments in which they are not found in their native range. We argue that reciprocal comparisons between predicted native and invaded ranges will facilitate a better understanding of the biogeography of invasive and native species and of the role of SDMs in predicting future distributions.  相似文献   

18.
Aim Reconstructing the introduction history of exotic species is critical to understanding ecological and evolutionary processes that underlie invasive spread and to designing strategies that prevent or manage invasions. The aims of this study were to infer the introduction history of the invasive apomictic bunchgrass Cortaderia jubata and to determine if molecular data support the postulated horticultural origin of invasive populations. Location Invaded areas in the USA (California, Maui) and New Zealand; native areas in Bolivia, Ecuador and Peru. Methods We used nuclear microsatellite markers to genotype 281 plants from invaded areas in California, Maui and New Zealand, and 77 herbarium specimens from native South America, and compared the genotypic and clonal variation of C. jubata from the invaded and native ranges. Clonal diversity was determined from genotypic diversity using two analytical methods. Results Invasive C. jubata from invaded regions in California, Maui and New Zealand consisted of the same single clone that probably originated from a single introduced genotype. In contrast, 14 clones were detected in herbarium specimens from the native areas of Bolivia, Ecuador and Peru. The invasive clone matched the most common clone identified in herbarium specimens from southern Ecuador where horticultural stock is presumed to have originated. Main conclusions The lack of clonal and genotypic diversity in invasive plants, but moderately high diversity detected in native plants, indicates a significant reduction in genetic variation associated with the introduction of C. jubata outside of its native range. Based on historical accounts of the horticultural introduction of C. jubata and the results of this study, a severe founder effect probably occurred during deliberate introduction of C. jubata into cultivation. Our results are consistent with the postulated horticultural origin of invasive C. jubata and point to southern Ecuador as the geographical source of invasive populations.  相似文献   

19.
20.
Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non‐native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non‐native environments could be different from native ones for which introduced individuals would be ill‐adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real‐time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD‐sequenced 301 specimens from sixteen populations and three distinct within‐catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome‐wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号