首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Aim: To develop an inactivation kinetic model to describe ultraviolet (UV) dose‐response behaviour for micro‐organisms that exhibit tailing using two commonly referenced causes for tailing: physical shielding of micro‐organisms and phenotypic persistence. Methods and Results: Dose‐response data for Escherichia coli, Mycobacterium terrae and Bacillus subtilis spores exposed to UV radiation were fit to the phenotypic persistence and external shielding (PPES) model. The fraction of persistent micro‐organisms in the original population (Npersistent/Ntotal) that exhibited reduced sensitivity to UV radiation was estimated by the PPES model as approx. 10?7, 10?5 and 10?4 for E. coli, B. subtilis spores and Myco. terrae, respectively. Particle shielding effects were evaluated for Myco. terrae and resulted in additional reduction in UV sensitivity. Conclusions: Tailing occurred in laboratory experiments even when clumping and shielding were eliminated as major factors in UV resistance, suggesting that phenotypic persistence in addition to shielding may be important to consider when evaluating dose‐response curves for disinfection applications. Significance and Impact of the Study: The PPES model provides a mechanistically plausible tool for estimating the dose–response behaviour for micro‐organisms that exhibit tailing in dispersed and aggregated settings. Accurate dose‐response behaviour (including the tailing region) is critical to the analysis and validation of all UV disinfection systems.  相似文献   

2.
Aims: The objective of the current study was to examine the interactions between Pseudomonas putida and Escherichia coli O157:H7 in coculture studies on fish‐burgers packed in air and under different modified atmospheres (30 : 40 : 30 O2 : CO2 : N2, 5 : 95 O2 : CO2 and 50 : 50 O2 : CO2), throughout the storage at 8°C. Methods and Results: The lag‐exponential model was applied to describe the microbial growth. To give a quantitative measure of the occurring microbial interactions, two simple parameters were developed: the combined interaction index (CII) and the partial interaction index (PII). Under air, the interaction was significant (P < 0·05) only within the exponential growth phase (CII, 1·72), whereas under the modified atmospheres, the interactions were highly significant (P < 0·001) and occurred both in the exponential and in the stationary phase (CII ranged from 0·33 to 1·18). PII values for E.  coli O157:H7 were lower than those calculated for Ps. putida. Conclusions: The interactions occurring into the system affected both E. coli O157:H7 and pseudomonads subpopulations. The packaging atmosphere resulted in a key element. Significance and Impact of the Study: The article provides some useful information on the interactions occurring between E. coli O157:H7 and Ps. putida on fish‐burgers. The proposed index describes successfully the competitive growth of both micro‐organisms, giving also a quantitative measure of a qualitative phenomenon.  相似文献   

3.
Aims: To develop a new instrument of great versatility for recovering micro‐organisms from all types of food samples and to compare the effects with existing sample preparation methods. Methods and Results: To detach micro‐organisms from large‐size unbroken food samples such as apples, carrots, potatoes and tomatoes without preprocessing, the Spindle apparatus was newly developed. The Spindle was used to effectively detach micro‐organisms from large‐size samples. In a comparative study involving 51 food samples, treatment with the Spindle and Stomacher showed that recovery of total aerobic micro‐organisms (naturally occurring mesophilic microflora) and foodborne pathogens (from samples inoculated with Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes) for both methods was highly correlated (R2 = 0·98). Furthermore, diluents treated by the Spindle contained much less food debris than those treated by stomaching. Conclusions: These results indicate that Spindle is a novel, effective alternative method for detaching micro‐organisms from food samples including four kinds of large‐size samples without the need for preprocessing. Significance and Impact of Study: The Spindle might be used to widely detaching micro‐organisms from all types of food samples for microbiological assay.  相似文献   

4.
Aims: Investigating mechanisms of lethality enhancement when Escherichia coli O157:H7, and selected E. coli mutants, were exposed to tert‐butylhydroquinone (TBHQ) during ultra‐high pressure (UHP) treatment. Methods and Results: Escherichia coli O157:H7 EDL‐933, and 14 E. coli K12 strains with mutations in selected genes, were treated with dimethyl sulfoxide solution of TBHQ (15–30 ppm), and processed with UHP (400 MPa, 23 ± 2°C for 5 min). Treatment of wild‐type E. coli strains with UHP alone inactivated 2·4–3·7 log CFU ml?1, whereas presence of TBHQ increased UHP lethality by 1·1–6·2 log CFU ml?1; TBHQ without pressure was minimally lethal (0–0·6 log reduction). Response of E. coli K12 mutants to these treatments suggests that iron–sulfur cluster‐containing proteins ([Fe–S]‐proteins), particularly those related to the sulfur mobilization (SUF system), nitrate metabolism, and intracellular redox potential, are critical to the UHP–TBHQ synergy against E. coli. Mutations in genes maintaining redox homeostasis and anaerobic metabolism were associated with UHP–TBHQ resistance. Conclusions: The redox cycling activity of cellular [Fe–S]‐proteins may oxidize TBHQ, potentially leading to the generation of bactericidal reactive oxygen species. Significance and Impact of the Study: A mechanism is proposed for the enhanced lethality of UHP by TBHQ against E. coli O157:H7. The results may benefit food processors using UHP–based preservation, and biologists interested in piezophilic micro‐organisms.  相似文献   

5.
Aims: To compare enzymatic activities of two related chitinases, ChiA and EF0361, encoded by Listeria monocytogenes and Enterococcus faecalis, respectively. Methods and Results: The chiA and EF0361 genes were amplified by PCR, cloned and expressed with histidine tags, allowing easy purification of the gene products. ChiA had a molecular weight as predicted from the amino acid sequence, whereas EF0361 was 1840 Da lower than expected because of C‐terminal truncation. The ChiA and EF0361 enzymes showed activity towards 4‐nitrophenyl N,N′‐diacetyl‐β‐d ‐chitobioside with Km values of 1·6 and 2·1 mmol l?1, respectively, and kcat values of 21·6 and 6·5 s?1. The enzymes also showed activity towards 4‐nitrophenyl β‐d ‐N, N′, N″‐triacetylchitotriose and carboxy‐methyl‐chitin‐Remazol Brilliant Violet but not towards 4‐nitrophenyl N‐acetyl‐β‐d ‐glucosaminide. Chitinolytic specificities of the enzymes were supported by their inactivity towards the substrates 4‐nitrophenyl β‐d ‐cellobioside and peptidoglycan. The pH and temperature profiles for catalytic activities were relatively similar for both the enzymes. Conclusion: The ChiA and EF0361 enzymes show a high degree of similarity in their catalytic activities although their hosts share environmental preferences only to some extent. Significance and Impact of the Study: This study contributes to an understanding of the chitinolytic activities by L. monocytogenes and Ent. faecalis. Detailed information on their chitinolytic systems will help define potential reservoirs in the natural environment and possible transmission routes into food‐manufacturing plants.  相似文献   

6.
Aims: The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral and (iiii) possible synergistic effects of mild heat treatment and pulsed electric fields (PEF) treatment combined with citral. Methods and Results: The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 μl l?1 of citral at pH 4·0 for 24 h at 20°C caused the inactivation of more than 5 log10 cycles of cells starting at an inoculum size of 106 or 107 CFU ml?1, whereas increasing the cell concentration to 109 CFU ml?1 caused <1 log10 cycle of inactivation. Escherichia coli showed higher resistance to citral at pH 4·0 than pH 7·0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild‐type strain. Occurrence of sublethal injury to both the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. Conclusions: This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Significance and Impact of the Study: Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.  相似文献   

7.
Aims: The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Methods and Results: Orange juice and tomato juice were treated with electric field strengths in the range of 25–40 V cm?1 for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60‐, 90‐ and 180‐s treatments in orange juice with 40, 35 and 30 V cm?1 electric field strength, respectively. In tomato juice, treatment with 25 V cm?1 for 30 s was sufficient to achieve a 5‐log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Conclusions: Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. Significance and Impact of the Study: These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity.  相似文献   

8.
Short range side chain‐backbone hydrogen bonded motifs involving Asn and Gln residues have been identified from a data set of 1370 protein crystal structures (resolution ≤ 1.5 Å). Hydrogen bonds involving residues i ? 5 to i + 5 have been considered. Out of 12,901 Asn residues, 3403 residues (26.4%) participate in such interactions, while out of 10,934 Gln residues, 1780 Gln residues (16.3%) are involved in these motifs. Hydrogen bonded ring sizes (Cn, where n is the number of atoms involved), directionality and internal torsion angles are used to classify motifs. The occurrence of the various motifs in the contexts of protein structure is illustrated. Distinct differences are established between the nature of motifs formed by Asn and Gln residues. For Asn, the most highly populated motifs are the C10 (COδi …NHi + 2), C13 (COδi …NHi + 3) and C17 (NδHi …COi ? 4) structures. In contrast, Gln predominantly forms C16 (COεi …NHi ? 3), C12 (NεHi …COi ? 2), C15 (NεHi …COi ? 3) and C18 (NεHi …COi ? 4) motifs, with only the C18motif being analogous to the Asn C17structure. Specific conformational types are established for the Asn containing motifs, which mimic backbone β‐turns and α‐turns. Histidine residues are shown to serve as a mimic for Asn residues in side chain‐backbone hydrogen bonded ring motifs. Illustrative examples from protein structures are considered. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   

9.
The survival and growth of Escherichia coli O157:H7 (ATCC 43888 and NCTC 12900) and Listeria monocytogenes (ATCC 19114 and NCTC 11994) during storage (4 and 8°C) on ready-to-use (RTU) packaged vegetables (lettuce, swedes (rutabaga), dry coleslaw mix, soybean sprouts) were studied. The vegetables were sealed within oriented polypropylene packaging film, and modified atmospheres developed in packs during storage due to produce respiration. Survival and growth patterns were dependent on vegetable type, package atmosphere, storage temperature and bacterial strain. Populations of L. monocytogenes and E. coli O157:H7 increased (P<0.05, by 1.5 to 2.5 log cycles, depending on strain) during a 12-day storage period on shredded lettuce (8°C). L. monocytogenes populations also increased (by ∼1 log cycle) on packaged swedes, did not change significantly (P>0.05) in packages of soybean sprouts and decreased by ∼1.5 log cycles (P<0.05) on coleslaw mix (8°C). E. coli O157:H7 populations on packaged coleslaw and soybean sprouts increased (by 1.5 to 2.5 log cycles) up to day 5, but declined during subsequent storage (8°C). On packaged swedes (8°C), populations of E. coli O157:H7 strain ATCC 43888 increased (by ∼1 log cycle) during storage, whereas populations of strain 12900 increased between days 2 and 5, and declined during subsequent storage. Reducing the storage temperature from 8 to 4°C reduced the growth of L. monocytogenes and E. coli O157:H7 on packaged RTU vegetables. However, viable populations remained at the end of the storage period at 4°C. Journal of Industrial Microbiology & Biotechnology (2001) 27, 111–116. Received 25 May 2000/ Accepted in revised form 21 September 2000  相似文献   

10.
Aims: To investigate the effectiveness of infrared (IR) radiation heating in disinfecting air filters loaded with bioaerosols. Methods and Results: An irradiation device was constructed considering the unique characteristics of IR and the physical dimensions and radiative properties of air filters. Filters loaded with test bioaerosols were irradiated with the device and flash heated to an ultra‐high temperature (UHT). A maximum of 3·77‐, 4·38‐ and 5·32‐log inactivation of B. subtilis spores, E. coli, and MS2 virus respectively was achieved within 5 s of irradiation. Inactivation efficiency could be increased by using a higher IR power. Microscopic analysis showed no visible damage from the heat treatment that would affect filtration efficiency. Conclusions: Because the disinfection was a dry heat process, a temperature greater than 200°C was found necessary to successfully inactivate the test micro‐organisms. The results demonstrate that IR is able to quickly disinfect filters given sufficient incident power. Compared to existing filter disinfection technologies, it offers a faster and more effective solution. Significance and Impact of the Study: It has been shown that IR heating is a feasible option for filter disinfection; possibly reducing fomite transmission of collected micro‐organisms and preventing bioaerosol reaerosolization.  相似文献   

11.
Pulses of blue light cause stimulation of red light saturated photosynthesis in Ectocarpus siliculosus, because blue light activates the operation of a pathway for inorganic carbon (Ci) acquisition by inducing the mobilization of CO2 from an intermediate metabolite. In the absence of exogenous Ci, photosynthetic rates roughly equal those of CO2 release by respiration. In seawater of pH 9·5 (2·3 mol m–3 total Ci, but concentrations of free CO2 below 0·2 mmol m–3), photosynthesis was clearly above these rates, although they were only ≈ 30% of those in normal seawater (≈ pH 8). The degree and the time course of the stimulations of photosynthesis by pulses of blue light were unaltered at high pH. Essentially the same characteristics were found after buffering or in the presence of acetazolamide, an inhibitor of extracellular carbonic anhydrase activity. Therefore, it is concluded that Ectocarpus is able to directly take up HCO3 in addition to CO2 (uptake of CO32– cannot be excluded). The dependence of photosynthesis on Ci at pH 9·5 was biphasic, with Ci below 0·2 mol m–3 having no effect at all. In Ci-free seawater, the shapes of the stimulations after blue light pulses differed for pH 6, pH 8 and pH 9·5. At low pH, only the fast peak (maximum ≈ 5 min after blue light) was detected, whereas at high pH mainly the slow peak (maximum ≈ 20 min after blue light) was observed. At the intermediate pH 8, both peaks were present. As inhibition of total carbonic anhydrase by ethoxyzolamide brought out the fast peak of the stimulations at pH 9·5 it is concluded that the fast component was due to a transient disequilibrium of an intracellular pool of Ci which, after blue light, was fed by CO2 released from the postulated storage intermediate.  相似文献   

12.
Aims: The aim of this study was to evaluate the inactivation efficiency of Listeria monocytogenes ATCL3C 7644 and Salmonella enterica serovar Typhimurium strain DS88 by combined treatment of hypericin (Hyp)‐based photosensitization and high power pulsed light (HPPL). Methods and Results: Cells were incubated with Hyp (1 × 10?5 or 1 × 10?7 mol l?1) in PBS and illuminated with a light λ = 585 nm. For the combined treatment, bacteria were, after photosensitization, exposed to 350 pulses of HPPL (UV light dose = 0·023 J cm?2). Fluorescence measurements were performed to evaluate optimal time for cell–Hyp interaction. Results indicate that Hyp tends to bind both Listeria and Salmonella. After photosensitization treatment, Listeria population was reduced 7 log, whereas Salmonella was inactivated just 1 log. Electron photomicrograps of Salmonella and Listeria confirmed that photosensitization induced total collapse of the Listeria cell wall, but not that of Salmonella. After combined photosensitization–HPPL treatment, the population of Listeria was diminished by 7 log and Salmonella by 6·7 log. Conclusions: Listeria can be effectively inactivated by Hyp‐based photosensitization (7 log), whereas Salmonella is more resistant to photosensitization and can be inactivated just by 1 log in vitro. Combined treatment of photosensitization and pulsed light inactivates effectively (6·7–7 log) both the Gram‐positive and the more resistant to photosensitization Gram‐negative bacteria. Significance and Impact of the Study: A new approach to combat Gram‐positive and Gram‐negative bacteria is proposed, combining photosensitization with high power pulsed light.  相似文献   

13.
Aim: The pathogen growth in dairy compost was studied in a greenhouse setting under different seasons. Methods and Results: The five‐strain mixtures of each Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes were inoculated separately into dry compost to yield c. 1 log CFU g?1. After acclimation at room temperature, the inoculated compost was initially adjusted to moisture levels of 10–50% and then kept in a greenhouse under different seasons. The populations of all three pathogens increased by 2·1–3·9 log CFU g?1 within 3 days in autoclaved compost with initial moisture content of at least 40%. Listeria monocytogenes multiplied up to 2·4 log CFU g?1 in compost with initial moisture content of 30% and was detected up to 28 days for all seasons, whereas populations of both E. coli O157:H7 and Salmonella increased by c. 1 log in compost with initial moisture content of 30% during winter months only. No pathogen growth in nonautoclaved compost was detected. Conclusion: Bacterial species, temperature, light intensity and moisture content affected the growth potential and survival of pathogens in compost when the population of background microflora was low. Significance and Impact of the Study: Keeping compost as dry as possible and maintaining certain levels of background microflora may be critical to prevent the growth of pathogens.  相似文献   

14.
Aims: To assess the effectiveness of sequential treatments of radish seeds with aqueous chlorine dioxide (ClO2) and dry heat in reducing the number of Escherichia coli O157:H7. Methods and Results: Radish seeds containing E. coli O157:H7 at 5·5 log CFU g?1 were treated with 500 μg ml?1 ClO2 for 5 min and subsequently heated at 60°C and 23% relative humidity for up to 48 h. Escherichia coli O157:H7 decreased by more than 4·8 log CFU g?1 after 12 h dry‐heat treatment. The pathogen was inactivated after 48 h dry‐heat treatment, but the germination rate of treated seeds was substantially reduced from 91·2 ± 5·0% to 68·7 ± 12·3%. Conclusions: Escherichia coli O157:H7 on radish seeds can be effectively reduced by sequential treatments with ClO2 and dry heat. To eliminate E. coli O157:H7 on radish seeds without decreasing the germination rate, partial drying of seeds at ambient temperature before dry‐heat treatment should be investigated, and conditions for drying and dry‐heat treatment should be optimized. Significance and Impact of the study: This study showed that sequential treatment with ClO2 and dry‐heat was effective in inactivating large numbers of E. coli O157:H7 on radish seeds. These findings will be useful when developing sanitizing strategies for seeds without compromising germination rates.  相似文献   

15.
Mimicry of structural motifs is a common feature in proteins. The 10‐membered hydrogen‐bonded ring involving the main‐chain C?O in a β‐turn can be formed using a side‐chain carbonyl group leading to Asx‐turn. We show that the N? H component of hydrogen bond can be replaced by a Cγ‐H group in the side chain, culminating in a nonconventional C? H···O interaction. Because of its shape this β‐turn mimic is designated as ω‐turn, which is found to occur ~three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C? H···O interaction occurring between the terminal residues, constraining the torsion angles ?i + 1, ψi + 1, ?i + 2 and χ1(i + 2) (using the interacting Cγ atom). Based on these angles there are two types of ω‐turns, each of which can be further divided into two groups. Cβ‐branched side‐chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal‐binding sites. N‐linked glycosylation occurs at the consensus pattern Asn‐Xaa‐Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω‐turn, which may be the recognition site for protein modification. Location between two β‐strands is the most common occurrence in protein tertiary structure, and being generally exposed ω‐turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. Proteins 2015; 83:203–214. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

17.
We previously demonstrated that the progesterone‐ (P) initiated human sperm acrosome reaction (AR) was dependent on the presence of extracellular Na+ (Na+o). Moreover, Na+o depletion resulted in a decreased cytosolic pH (pHi), suggesting involvement of a Na+‐dependent pHi regulatory mechanism during the P‐initiated AR. We now report that the decreased pHi resulting from Na+o depletion is reversible and mediated by a Na+/H+ exchange (NHE) mechanism. To determine the role of an NHE in the regulation of pHi, capacitated spermatozoa were incubated in Na+‐deficient, bicarbonate/CO2‐buffered (0NaB) medium for 15–30 min, which resulted in an intracellular acidification as previously reported. These spermatozoa were then transferred to Na+‐containing, bicarbonate/CO2‐buffered (NaB) medium; Na+‐containing, Hepes‐buffered (NaH) medium; or maintained in the 0NaB medium. Included in the NaH medium was the NHE inhibitor 5‐(N‐ethyl‐N‐isopropyl) amiloride (EIPA). The steady‐state pHi was then determined by spectrofluorometric measurement of bis(carboxyethyl)‐5(6)‐carboxyfluoroscein (BCECF) fluorescence. EIPA (0.1 μM) significantly (P < 0.05) inhibited the pHi recovery produced by NaH medium. Moreover, the pHi in NaH medium was not significantly (P < 0.05) different than NaB medium. These results indicate that a Na+‐dependent, bicarbonate‐independent pHi regulatory mechanism, with a pharmacological characteristic consistent with an NHE, is present in capacitated spermatozoa. In support of the involvement of a sperm NHE, we also demonstrated specific immunoreactivity for a 100 kDa porcine sperm protein using an NHE‐1 specific monoclonal antibody. Interestingly, no significant (P = 0.79) effect was seen on the P‐initiated AR when EIPA was included in either the NaH or NaB medium. While these findings suggest that inhibition of NHE‐dependent pHi regulation in capacitated spermatozoa is not sufficient to block initiation of the AR by P, they do not preclude the possibility that an NHE mediates the regulation of capacitation or sperm motility. Mol. Reprod. Dev. 52:189–195, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
The conversion of carbon dioxide (CO2) and bicarbonate (HCO3) to each other is very important for living metabolism. Carbonic anhydrase (CA, E.C.4.2.1.1), a metalloenzyme familly, catalyzes the interconversion of these ions (CO2 and HCO3) and are very common in living organisms. In this study, a series of novel 2‐amino‐3‐cyanopyridines supported with some functional groups was synthesized and tested as potential inhibition effects against both cytosolic human CA I and II isoenzymes (hCA I and II) using by Sepharose‐4B‐l ‐tyrosine‐sulfanilamide affinity chromatography. The structural elucidations of novel 2‐amino‐3‐cyanopyridines were achieved by NMR, IR, and elemental analyses. K i values of the novel synthesized compounds were found in range of 2.84–112.44 μM against hCA I and 2.56–31.17 μM against hCA II isoenzyme. While compound 7d showed the best inhibition activity against hCA I (K i: 2.84 μM), the compound 7b demonstrated the best inhibition profile against hCA II isoenzyme (K i: 2.56 μM).  相似文献   

19.
Aims: When subjected to dynamic temperatures surpassing the expected maximum growth temperature, Escherichia coli K12 MG1655 shows disturbed growth curves. These irregular population dynamics were explained by considering two subpopulations, i.e. a thermoresistant and a thermosensitive one ( Van Derlinden et al. 2010a ). In this paper, the influence of the initial cell concentration on the subpopulations’ dynamics is evaluated. Methods and Results: Experiments were performed in a bioreactor with the temperature increasing from 42 to 65·2°C (1 and 4°C h?1) with varying initial cell concentrations [6, 12 and 18 ln(CFU ml?1)]. When started from the highest cell concentration, the population was characterized by a higher overall maximum growth temperature and a higher inactivation temperature. For all experimental set‐ups, resistant cells were still growing at the final temperature of 65·2°C. Conclusions: The initial cell concentration had no effect on temperature resistance. The increase in temperature resistance of the sensitive subpopulation was because of the change of the physiological state to the stationary phase. Significance and Impact of the Study: A higher initial cell concentration leads to higher heat stress adaptation when cultures reach a maximum cell concentration. The observed growth at a temperature of 65·2°C is very important for food safety and the temperature treatment of micro‐organisms.  相似文献   

20.
Aims:  Zero‐valent iron (ZVI) filters may provide an efficient method to mitigate the contamination of produce crops through irrigation water. Methods:  A field‐scale system was utilized to evaluate the effectiveness of a biosand filter (S), a biosand filter with ZVI incorporated (ZVI) and a control (C, no treatment) in decontaminating irrigation water. An inoculum of c. 8·5 log CFU 100 ml?1 of Escherichia coli O157:H12 was introduced to all three column treatments in 20‐l doses. Filtered waters were subsequently overhead irrigated to ‘Tyee’ spinach plants. Water, spinach plant and soil samples were obtained on days 0, 1, 4, 6, 8, 10, 13 and 15 and analysed for E. coli O157:H12 populations. Results:  ZVI filters inactivated c. 6 log CFU 100 ml?1E. coli O157:H12 during filtration on day 0, significantly (P < 0·05) more than S filter (0·49 CFU 100 ml?1) when compared to control on day 0 (8·3 log CFU 100 ml?1). On day 0, spinach plants irrigated with ZVI‐filtered water had significantly lower E. coli O157 counts (0·13 log CFU g?1) than spinach irrigated with either S‐filtered (4·37 log CFU g?1) or control (5·23 log CFU g?1) water. Soils irrigated with ZVI‐filtered water contained E. coli O157:H12 populations below the detection limit (2 log CFU g?1), while those irrigated with S‐filtered water (3·56 log CFU g?1) were significantly lower than those irrigated with control (4·64 log CFU g?1). Conclusions:  ZVI biosand filters were more effective in reducing E. coli O157:H12 populations in irrigation water than sand filters. Significance and Impact of the Study:  Zero‐valent ion treatment may be a cost‐effective mitigation step to help small farmers reduce risk of foodborne E. coli infections associated with contamination of leafy greens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号