首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

One of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified.

Methods

We studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells.

Results

We demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS.

Conclusion

Our observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.
  相似文献   

2.

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
  相似文献   

3.

Aims

Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K+ and NH4 +, both high-demand nutrients.

Methods

A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K+ and NH4 +.

Results

Competitive cation exchange enabled low-demand cations that accumulate against roots (Ca2+, Mg2+, Na+) to desorb NH4 + and K+ from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH4 + and K+ aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations.

Conclusions

Diel plant water use and competitive cation exchange enhanced NH4 + and K+ availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.
  相似文献   

4.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

5.

Background

It has been shown that the contractile state of airway smooth muscle cells (SMCs) in response to agonists is determined by the frequency of Ca2+ oscillations occurring within the SMCs. Therefore, we hypothesized that the relaxation of airway SMCs induced by agents that increase cAMP results from the down-regulation or slowing of the frequency of the Ca2+ oscillations.

Methods

The effects of isoproterenol (ISO), forskolin (FSK) and 8-bromo-cAMP on the relaxation and Ca2+ signaling of airway SMCs contracted with methacholine (MCh) was investigated in murine lung slices with phase-contrast and laser scanning microscopy.

Results

All three cAMP-elevating agents simultaneously induced a reduction in the frequency of Ca2+ oscillations within the SMCs and the relaxation of contracted airways. The decrease in the Ca2+ oscillation frequency correlated with the extent of airway relaxation and was concentration-dependent. The mechanism by which cAMP reduced the frequency of the Ca2+ oscillations was investigated. Elevated cAMP did not affect the re-filling rate of the internal Ca2+ stores after emptying by repetitive exposure to 20 mM caffeine. Neither did elevated cAMP limit the Ca2+ available to stimulate contraction because an elevation of intracellular Ca2+ concentration induced by exposure to a Ca2+ ionophore (ionomycin) or by photolysis of caged-Ca2+ did not reverse the effect of cAMP. Similar results were obtained with iberiotoxin, a blocker of Ca2+-activated K+ channels, which would be expected to increase Ca2+ influx and contraction. By contrast, the photolysis of caged-IP3 in the presence of agonist, to further elevate the intracellular IP3 concentration, reversed the slowing of the frequency of the Ca2+ oscillations and relaxation of the airway induced by FSK. This result implied that the sensitivity of the IP3R to IP3 was reduced by FSK and this was supported by the reduced ability of IP3 to release Ca2+ in SMCs in the presence of FSK.

Conclusion

These results indicate that the relaxant effect of cAMP-elevating agents on airway SMCs is achieved by decreasing the Ca2+ oscillation frequency by reducing internal Ca2+ release through IP3 receptors.
  相似文献   

6.

Introduction

Metabolite identification in biological samples using Nuclear Magnetic Resonance (NMR) spectra is a challenging task due to the complexity of the biological matrices.

Objectives

This paper introduces a new, automated computational scheme for the identification of metabolites in 1D 1H NMR spectra based on the Human Metabolome Database.

Methods

The methodological scheme comprises of the sequential application of preprocessing, data reduction, metabolite screening and combination selection.

Results

The proposed scheme has been tested on the 1D 1H NMR spectra of: (a) an amino acid mixture, (b) a serum sample spiked with the amino acid mixture, (c) 20 blood serum, (d) 20 human amniotic fluid samples, (e) 160 serum samples from publicly available database. The methodological scheme was compared against widely used software tools, exhibiting good performance in terms of correct assignment of the metabolites.

Conclusions

This new robust scheme accomplishes to automatically identify peak resonances in 1H-NMR spectra with high accuracy and less human intervention with a wide range of applications in metabolic profiling.
  相似文献   

7.
8.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

9.

Background

Metabolic syndrome (MetS) is a prevalent risk factor for cardiac dysfunction. Although SGLT2-inhibitors have important cardioprotective effects in hyperglycemia, their underlying mechanisms are complex and not completely understood. Therefore, we examined mechanisms of a SGLT2-inhibitor dapagliflozin (DAPA)-related cardioprotection in overweight insulin-resistant MetS-rats comparison with insulin (INSU), behind its glucose-lowering effect.

Methods

A 28-week high-carbohydrate diet-induced MetS-rats received DAPA (5 mg/kg), INSU (0.15 mg/kg) or vehicle for 2 weeks. To validate MetS-induction, we monitored all animals weekly by measuring body weight, blood glucose and HOMO-IR index, electrocardiograms, heart rate, systolic and diastolic pressures.

Results

DAPA-treatment of MetS-rats significantly augmented the increased blood pressure, prolonged Q–R interval, and low heart rate with depressed left ventricular function and relaxation of the aorta. Prolonged-action potentials were preserved with DAPA-treatment, more prominently than INSU-treatment, at most, through the augmentation in depressed voltage-gated K+-channel currents. DAPA, more prominently than INSU-treatment, preserved the depolarized mitochondrial membrane potential, and altered mitochondrial protein levels such as Mfn-1, Mfn-2, and Fis-1 as well as provided significant augmentation in cytosolic Ca2+-homeostasis. Furthermore, DAPA also induced significant augmentation in voltage-gated Na+-currents and intracellular pH, and the cellular levels of increased oxidative stress, protein-thiol oxidation and ADP/ATP ratio in cardiomyocytes from MetS rats. Moreover, DAPA-treatment normalized the increases in the mRNA level of SGLT2 in MetS-rat heart.

Conclusions

Overall, our data provided a new insight into DAPA-associated cardioprotection in MetS rats, including suppression of prolonged ventricular-repolarization through augmentation of mitochondrial function and oxidative stress followed by improvement of fusion–fission proteins, out of its glucose-lowering effect.
  相似文献   

10.

Background

Co-administration of anti-tuberculosis and antiretroviral therapy is often inevitable in high-burden countries where tuberculosis is the most common opportunistic infection associated with HIV/AIDS. Concurrent use of rifampicin and several antiretroviral drugs is complicated by pharmacokinetic drug-drug interaction.

Method

Pubmed and Google search following the key words tuberculosis, HIV, emtricitabine, tenofovir efavirenz, interaction were used to find relevant information on each drug of the fixed dose combination AtriplaR

Results

Information on generic name, trade name, pharmacokinetic parameter, metabolism and the pharmacokinetic interaction with Anti-TB drugs of emtricitabine, tenofovir, and efavirenz was obtained.

Conclusion

Fixed dose combination of emtricitabine/tenofovir/efavirenz (ATRIPLAR) which has been approved by Food and Drug Administration shows promising results as far as safety and efficacy is concerned in TB/HIV co-infection patients, hence can be considered effective and safe antiretroviral drug in TB/HIV management for adult and children above 3 years of age.
  相似文献   

11.

Introduction

Loquat leaf extract (LLE) is commonly used in China for a variety of ailments including diabetes. Several recent reports implicate LLE and a sesquiterpene glycoside, one of its components, as being an anti-hyperglycemic agent. However, the underlying mechanism of action of this anti-hyperglycemic agent has not been reported.

Objective

We have conducted a tracer-based metabolomics study to investigate the effects of sesquiterpene and loquat extract on the balance of flux of central glucose metabolism in HepG2 cells and to compare with those of “insulin sensitizers”, metformin and rosiglitazone.

Methods

Human hepatoma HepG2 cells in confluence culture were incubated in Dulbecco’s modified Eagle’s medium containing 50% [1, 2 13C2]-glucose in the presence of rosiglitazone, metformin, LLE or pure sesquiterpene. Cells were harvested in 48 h. Mass isotopomers of metabolites (glycogen, ribose, deoxyribose, glutamate and palmitate) were determined.

Results

13C labeling in metabolic intermediates were summarized in a mass isotopomer matrix. Treatment with loquat extract/sesquiterpene, metformin and rosiglitazone each produced distinctive mass isotopomer patterns reflecting disparate effects on the contribution of glucose to various metabolites production, and on several metabolic flux ratios. The overall effect of LLE and sesquiterpene on glucose metabolism is clearly different from those of the known “insulin sensitizers”.

Conclusion

Our study demonstrates the utility of isotopomer matrix in summarizing metabolic actions of LLE on the balance of fluxes occurring within the central glucose metabolism in HepG2 cells. 13C carbon tracing (tracer-based metabolomics) is a useful systems biology tool to elucidate glucose metabolic pathways affected by diabetes and its treatment.
  相似文献   

12.

Introduction

Adoption of automatic profiling tools for 1H-NMR-based metabolomic studies still lags behind other approaches in the absence of the flexibility and interactivity necessary to adapt to the properties of study data sets of complex matrices.

Objectives

To provide an open source tool that fully integrates these needs and enables the reproducibility of the profiling process.

Methods

rDolphin incorporates novel techniques to optimize exploratory analysis, metabolite identification, and validation of profiling output quality.

Results

The information and quality achieved in two public datasets of complex matrices are maximized.

Conclusion

rDolphin is an open-source R package (http://github.com/danielcanueto/rDolphin) able to provide the best balance between accuracy, reproducibility and ease of use.
  相似文献   

13.

Background

Purpose of the study was to investigate alterations in midbrain serotonin transporter (SERT) binding in patients with epilepsy and symptoms of depression compared to patients with epilepsy with no symptoms of depression.

Methods

We studied 12 patients with epilepsy (7 patients had focal and 5 had generalized epilepsy syndromes). The presence of self-reported symptoms of depression was assessed using Beck Depression Inventory (BDI) and the Emotional State Questionnaire (EST-Q). The binding potential of the SERT was assessed by performing brain single photon emission tomography (SPET) using the SERT radioligand 2-((2-((dimethylamino)methyl)phenyl)thio)-5-(123)iodophenylamine (123I-ADAM).

Results

Seven patients had BDI and EST-Q subscale scores greater than 11 points, which was interpreted as the presence of symptoms of depression. We found that 123I-ADAM binding was not significantly different between patients with epilepsy with and without symptoms of depression. In addition, 123I-ADAM binding did not show a significant correlation to either BDI or EST-Q depression subscale scores and did not differ between patients with focal vs. generalized epilepsy.

Conclusion

The results of our study failed to demonstrate alterations of SERT binding properties in patients with epilepsy with or without symptoms of depression.
  相似文献   

14.

Background

The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). To investigate in vivo to what extent the homeostasis of intracellular free Mg2+ is linked to pH in human skeletal muscle, we studied patients with metabolic myopathies due to different disorders of glycogen metabolism that share a lack of intracellular acidification during muscle exercise.

Methods

We assessed by 31P MRS the cytosolic pH and free magnesium concentration ([Mg2+]) in calf muscle during exercise and post-exercise recovery in two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers both affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK).

Results

All patients displayed a lack of intracellular acidosis during muscle exercise. At rest only one PFK patient showed a [Mg2+] higher than the value found in control subjects. During exercise and recovery the McArdle patients did not show any significant change in free [Mg2+], while both PFK patients showed decreased free [Mg2+] and a remarkable accumulation of phosphomonoesters (PME). During initial recovery both McArdle patients showed a small increase in free [Mg2+] while in PFK patients the pattern of free [Mg2+] was related to the rate of PME recovery.

Conclusion

i) homeostasis of free [Mg2+] in human skeletal muscle is strongly linked to pH as shown by patients' [Mg2+] pattern during exercise;ii) the pattern of [Mg2+] during exercise and post-exercise recovery in both PFK patients suggests that [Mg2+] is influenced by the accumulation of the phosphorylated monosaccharide intermediates of glycogenolysis, as shown by the increased PME peak signal.iii) 31P MRS is a suitable tool for the in vivo assessment of free cytosolic [Mg2+] in human skeletal muscle in different metabolic conditions;
  相似文献   

15.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

16.

Background

Neuronal Ca2+ dyshomeostasis and hyperactivity play a central role in Alzheimer’s disease pathology and progression. Amyloid-beta together with non-genetic risk-factors of Alzheimer’s disease contributes to increased Ca2+ influx and aberrant neuronal activity, which accelerates neurodegeneration in a feed-forward fashion. As such, identifying new targets and drugs to modulate excessive Ca2+ signalling and neuronal hyperactivity, without overly suppressing them, has promising therapeutic potential.

Methods

Here we show, using biochemical, electrophysiological, imaging, and behavioural tools, that pharmacological modulation of Rap1 signalling by inhibiting its interaction with Pde6δ normalises disease associated Ca2+ aberrations and neuronal activity, conferring neuroprotection in models of Alzheimer’s disease.

Results

The newly identified inhibitors of the Rap1-Pde6δ interaction counteract AD phenotypes, by reconfiguring Rap1 signalling underlying synaptic efficacy, Ca2+ influx, and neuronal repolarisation, without adverse effects in-cellulo or in-vivo. Thus, modulation of Rap1 by Pde6δ accommodates key mechanisms underlying neuronal activity, and therefore represents a promising new drug target for early or late intervention in neurodegenerative disorders.

Conclusion

Targeting the Pde6δ-Rap1 interaction has promising therapeutic potential for disorders characterised by neuronal hyperactivity, such as Alzheimer’s disease.
  相似文献   

17.

Objectives

To improve cellulase production and activity, Trichoderma viride GSICC 62010 was subjected to mutation involving irradiation with an electron beam and subsequently with a 12C6+-ion beam.

Results

Mutant CIT 626 was the most promising cellulase producer after preliminary and secondary screening. Soluble protein production and cellulase activities were increased mutifold. The optimum temperature, pH and culture time for the maximum cellulase production of the selected mutant were 35 °C, pH 5 and 6 days. The highest cellulase production was obtained using wheat bran. The prepared cellulases from T. viride CIT 626 had twice the hydrolytic performance with sawdust (83 %) than that from the parent strain (42.5 %). Furthermore, molecular studies demonstrated that there were some key mutation sites suggesting that some amino acid changes in the protein caused by base mutations had led to the enhanced cellulase production and activity.

Conclusions

Mutagenesis with electron and 12C6+-ion beams could be developed as an effective tool for improvement of cellulase producing strains.
  相似文献   

18.

Introduction

The analysis of limited-quantity samples remains a challenge associated with mouse models, especially for multi-platform metabolomics studies. Although inherently insensitive, the highly specific characteristics of nuclear magnetic resonance (NMR) spectroscopy make it an advantageous platform for global metabolite profiling, particularly in mitochondrial disease research.

Objectives

Show method equivalency between a well-established standard operating protocol (SOP) and our novel miniaturized 1H-NMR method.

Method

The miniaturized method was performed in a 2 mm NMR tube on a standard 500 MHz NMR spectrometer with a 5 mm triple-resonance inverse TXI probe at room temperature.

Results

Firstly, using synthetic urine spiked with low (50 µM), medium (250 µM) and high (500 µM) levels (n?=?10) of nine standards, both the SOP and miniaturized method were shown to have acceptable precision (CV?<?15%), relative accuracy (80–120%), and linearity (R2?>?0.95), except for taurine. Furthermore, statistical equivalence was shown using the two one-sided test. Secondly, pooled mouse quadriceps muscle extract was used to further confirm method equivalence (n?=?3), as well as explore the analytical dynamics of this novel approach by analyzing more-concentrated versions of samples (up to 10× concentration) to expand identification of metabolites qualitatively, with quantitative linearity. Lastly, we demonstrate the new technique’s application in a pilot metabolomics study using minute soleus muscle tissue from a mouse model of Leigh syndrome using Ndufs4 KO mice.

Conclusion

We demonstrate method equivalency, supporting our novel miniaturized 1H-NMR method as a financially feasible alternative to cryoprobe technology—for limited-quantity biological samples in metabolomics studies that requires a volume one-tenth of the SOP.
  相似文献   

19.

Objectives

To determine the origin of 15N-labeled phenylalanine in microbial metabolic flux analysis using 15N as a tracer, a method for measuring phenylalanine δ15N using HPLC coupled with elemental analysis-isotope ratio mass spectrometry (EA-IRMS) was developed.

Results

The original source of the 15N-labeled phenylalanine was determined using this new method that consists of three steps: optimization of the HPLC conditions, evaluation of the isotope fractionation effects, and evaluation of the effect of pre-processing on the phenylalanine nitrogen stable isotope. In addition, the use of a 15N-labeled inorganic nitrogen source, rather than 15N-labeled amino acids, was explored using this method.

Conclusions

The method described here can also be applied to the analysis of metabolic flux.
  相似文献   

20.

Introduction

Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative GC patients.

Objectives

We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential metabolic biomarkers in the process of LNM of GC.

Methods

1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of tissue samples from LNM-positive GC patients (n?=?40), LNM-negative GC patients (n?=?40) and normal controls (n?=?40).

Results

There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distinguishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism (leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or without LNM.

Conclusion

To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism underlying the carcinogenesis, invasion and metastasis of GC.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号