首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aphids harbor primary endosymbionts, Buchnera aphidicola, in specialized cells within their body cavities. Aphids and Buchnera have strict mutualistic relationships in nutrition exchange. This ancient association has received much attention from researchers who are interested in endosymbiotic evolution. Previous studies have found parallel phylogenetic relationships between non‐galling aphids and Buchnera at lower taxonomic levels (genus, species). To understand whether relatively isolated habitats such as galls have effect on the parallel relationships between aphids and Buchnera, the present paper investigated the phylogenetic relationships of gall aphids from Pemphigus and allied genera, which induce pseudo‐galls or galls on Populus spp. (poplar) and Buchnera. The molecular phylogenies inferred from three aphid genes (COI, COII and EF‐1α) and two Buchnera genes (gnd, 16S rRNA gene) indicated significant congruence between aphids and Buchnera at generic as well as interspecific levels. Interestingly, both aphid and Buchnera phylogenies supported three main clades corresponding to the galling locations of aphids, namely leaf, the joint of leaf blade and petiole, and branch of the host plant. The results suggest phylogenetic conservatism of gall characters, which indicates gall characters are more strongly affected by aphid phylogeny, rather than host plants.  相似文献   

2.
Social and brood parasitisms are nonconsumptive forms of parasitism involving the exploitation of the colonies or nests of a host. Such parasites are often related to their hosts and may evolve in various ecological contexts, causing evolutionary constraints and opportunities for both parasites and their hosts. In extreme cases, patterns of diversification between social parasites and their hosts can be coupled, such that diversity of one is correlated with or even shapes the diversity of the other. Aphids in the genus Tamalia induce galls on North American manzanita (Arctostaphylos) and related shrubs (Arbutoideae) and are parasitized by nongalling social parasites or inquilines in the same genus. We used RNA sequencing to identify and generate new gene sequences for Tamalia and performed maximum‐likelihood, Bayesian and phylogeographic analyses to reconstruct the origins and patterns of diversity and host‐associated differentiation in the genus. Our results indicate that the Tamalia inquilines are monophyletic and closely related to their gall‐forming hosts on Arctostaphylos, supporting a previously proposed scenario for origins of these parasitic aphids. Unexpectedly, population structure and host‐plant‐associated differentiation were greater in the non‐gall‐inducing parasites than in their gall‐inducing hosts. RNA‐seq indicated contrasting patterns of gene expression between host aphids and parasites, and perhaps functional differences in host‐plant relationships. Our results suggest a mode of speciation in which host plants drive within‐guild diversification in insect hosts and their parasites. Shared host plants may be sufficient to promote the ecological diversification of a network of phytophagous insects and their parasites, as exemplified by Tamalia aphids.  相似文献   

3.
4.
1. Parasitoid females foraging for hosts rely on cues derived from the insect host, the host plant and/or their interaction, and all of these can be learned during the immature and adult stages. 2. The present study investigated the importance of rearing history on foraging behaviour of Diaeretiella rapae, an endoparasitoid often associated with aphids feeding on brassicaceous plant species. 3. Parasitoids were reared on one of the four possible combinations, comprising two brassicaceous host plant species, Brassica nigra or Raphanus sativus, and two aphid species Brevicoryne brassicae or Myzus persicae. These parasitoids were tested in a Y‐tube olfactometer and given the choice between volatiles emitted by an aphid‐infested plant (25 or 100 aphids per plant) and an uninfested control plant. The parasitoid's responses were compared when offered: (i) the same plant–aphid combination as the one on which it had been reared; (ii) the same host plant infested with the alternative aphid species; or (iii) an alternative plant with the alternative aphid species. 4. Aphid density did affect the behavioural responses to the various odour sources, but rearing history did not. Diaeretiella rapae only preferred aphid‐induced to non‐induced plant volatiles at low aphid infestation level, whereas they did not discriminate between volatiles at high aphid infestation level. 5. It is concluded that aphid‐induced volatiles of brassicaceous plants play an important role during host habitat location, but seem less important for parasitoids to locate the aphid host itself. The data are discussed in the light of manipulation of host plant defences by aphids.  相似文献   

5.
Aphid saliva plays an essential role in the interaction between aphids and their host plants. Several aphid salivary proteins have been identified but none from galling aphids. Here the salivary proteins from the Chinese gall aphid are analyzed, Schlechtendalia chinensis, via an LC‐MS/MS analysis. A total of 31 proteins are identified directly from saliva collected via an artificial diet, and 141 proteins are identified from extracts derived from dissected salivary glands. Among these identified proteins, 17 are found in both collected saliva and dissected salivary glands. In comparison with salivary proteins from ten other free‐living Hemipterans, the most striking feature of the salivary protein from S. chinensis is the existence of high proportion of proteins with binding activity, including DNA‐, protein‐, ATP‐, and iron‐binding proteins. These proteins maybe involved in gall formation. These results provide a framework for future research to elucidate the molecular basis for gall induction by galling aphids.  相似文献   

6.
7.
8.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

9.
Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three‐species plant‐aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi‐parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host‐plant community than in a genetic monoculture, with host‐plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host‐plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host‐plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes.  相似文献   

10.
We used mitochondrial DNA data to infer phylogenies for 28 samples of gall-inducing Tamalia aphids from 12 host-plant species, and for 17 samples of Tamalia inquilinus, aphid 'inquilines' that obligately inhabit galls of the gall inducers and do not form their own galls. Our phylogenetic analyses indicate that the inquilines are monophyletic and closely related to their host aphids. Tamalia coweni aphids from different host plants were, with one exception, very closely related to one another. By contrast, the T. inquilinus aphids were strongly genetically differentiated among most of their host plants. Comparison of branch lengths between the T. coweni clade and the T. inquilinus clade indicates that the T. inquilinus lineage evolves 2.5-3 times faster for the cytochrome oxidase I gene. These results demonstrate that: (1) Tamalia inquilines originated from their gall-inducing hosts, (2) communal (multi-female) gall induction apparently facilitated the origin of inquilinism, (3) diversification of the inquilines has involved rapid speciation along host-plant lines, or the rapid evolution of host-plant races, and (4) the inquilines have undergone accelerated molecular evolution relative to their hosts, probably due to reduced effective population sizes. Our findings provide insight into the behavioural causes and evolutionary consequences of transitions from resource generation to resource exploitation.  相似文献   

11.
The tribe Fordini is a fascinating group because of its complicated life history, primary host specificity and gall-forming characteristic. Different species produce galls with different morphology on different parts of the host plants. The EF-1alpha-based, COI-based and combined sequences-based phylogenetic trees with three algorithms MP, ML and Bayes all strongly suggest that Fordini is a monophyletic group with two clades corresponding to two subtribes, Fordina and Melaphidina, each also monophyletic. Some important morphological characters and primary host plants of aphids were mapped onto the phylogenetic tree to analyse the division of subtribes and to uncover at which level the aphids correspond to their primary hosts, Pistacia and Rhus. Results suggest that the division of subtribes in Fordini is closely related to host selection of aphids. The evolution of gall morphology and the probable driving force behind it in this tribe were also discussed. The Fordini aphids seem to have evolved towards a better ability to manipulate their host plant, induce strong sinks and gain high reproductive success. Galls in this tribe evolved mainly along two directions to attain this goal: (i) by enlarging the gall from small bag to spherical, even big cauliflower-like, and changing the galls' location or forming two galls in their life cycle (Fordina); (ii) by moving the gall position from midrib, petiole of the leaflet, and eventually to the common petiole of the compound leaf (Melaphidina).  相似文献   

12.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

13.
1. Sympatric populations of insects adapted to different host plants are good model systems not only to study how they adapt to the chemistry of their food plant, but also to investigate whether morphological modifications evolved enabling them to live successfully on a certain plant species. 2. The pea aphid, Acyrthosiphon pisum (Harris) encompasses at least 11 genetically distinct sympatric host races, each showing a preference for a certain legume species. The leaflet surfaces of these legumes differ considerably in their wax coverage. 3. It was investigated whether the attachment structures of three pea aphid genotypes from different host races are adapted to the different surface properties of their host plants and whether they show differences in their attachment ability on the respective host and non‐host plants. 4. The surface morphology of plants and aphid tarsi was examined using SEM (scanning electron microscopy). The ability of the aphids to walk on specific surfaces was tested using traction force measurements. 5. The presence of wax blooms on the leaflets lowers the aphids' attachment ability considerably and diminishes their subsequent attachment on ‘neutral’ surfaces like glass. The pea aphid host races differ in their ability to walk on certain surfaces. However, the genotype from the adapted aphid host race was not necessarily the one with the best walking performance on their host plant. All aphids, regardless of the original host plant, were most efficient on the neutral control surface glass. The general host plant Vicia faba was the plant with the most favourable surface for all aphid host races.  相似文献   

14.
1. Different groups of specialised herbivores often exhibit highly variable responses to host plant traits and phylogeny. Gall‐forming insects and mites on willows are highly adapted to their hosts and represent one of the richest communities of gallers associated with a single genus of host plants. 2. The present study evaluated the effects of host plant secondary metabolites (salicylates, flavonoids, condensed tannins), physical traits (trichome density), nutrient content (N:C) and phylogeny on the abundance and richness of gall‐forming arthropods associated with eight willow species and Populus tremula. 3. Galler abundance was affected by N:C rather than by willow defensive traits or phylogeny, suggesting that gallers respond differently to host plant traits than to less specialised guilds, such as leaf‐chewing insects. None of the studied defensive traits had a significant effect on gall abundance. Gall morphospecies richness was correlated with the host phylogeny, mainly with the nodes representing the inner division of the willow subgenus Vetrix. This suggests that the radiation of some willow taxa could have been important for the speciation of gallers associated with willows. 4. In conclusion, it is shown that whereas willow traits, such as nutrient content, appeared to affect abundances of gallers, it is probably willow radiation that drives galler speciation.  相似文献   

15.
Abstract 1. The taxon known as the pea aphid, Acyrthosiphon pisum, is composed of a series of host plant associated populations and is widely used as a model system to explore ecological speciation and the evolution of specialisation. It is thus important to know how maternal and pre‐adult experience influences host plant utilisation in this species. 2. The relative importance of the maternal and pre‐adult host plant for adult fecundity and host preference was investigated using three aphid clones collected from Lathyrus pratensis and maintained on Lathyrus or Vicia faba. 3. No significant effects of the maternal host plant on offspring fecundity were detected. 4. The host plant on which the aphid grew up influenced adult fecundity, although in a complex way that depended on both the adult host plant species and when after transfer to the test plant fecundity was assessed. 5. All three clones preferred to colonise Lathyrus over Vicia, and this preference was stronger for aphids raised on Lathyrus. 6. The significance of the results for studies of the evolution of specialisation and speciation that employ A. pisum is discussed.  相似文献   

16.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

17.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

18.
1. To maximise their reproductive success, the females of most parasitoids must not only forage for hosts but must also find suitable food sources. These may be nectar and pollen from plants, heamolymph from hosts and/or honeydew from homopterous insects such as aphids. 2. Under laboratory conditions, females of Cotesia vestalis, a larval parasitoid of the diamondback moth (Plutella xylostella) which does not feed on host blood, survived significantly longer when held with cruciferous plants infested with non‐host green peach aphids (Myzus persicae) than when held with only uninfested plants. 3. Naïve parasitoids exhibited no preference between aphid‐infested and uninfested plants in a dual‐choice test, but those that had been previously fed aphid honeydew significantly preferred aphid‐infested plants to uninfested ones. 4. These results suggest that parasitoids that do not use aphids as hosts have the potential ability to learn cues from aphid‐infested plants when foraging for food. This flexible foraging behaviour could allow them to increase their lifetime reproductive success.  相似文献   

19.
The Enemy hypothesis is a theoretical framework for understanding the adaptive nature of galls induced in host plants by insects. Contrary to other gall inducing insects, like Cynipids or sawflies, this hypothesis has not been studied for the gall aphids on pistachio trees in the Middle East. Galls on plants are supposed to protect their inducers from other organisms, including herbivores feeding on the host plant and possibly feeding on the gall tissue. Assuming that among aphid enemies there are numerous insects which have to perforate the gall wall to access the aphids inside, determining whether the gall wall has anti-insect properties should be one of the first steps in dealing with this hypothesis. In the present research using Baizongia pistaciae [L.], an aphid that creates perfectly closed galls in Pistacia palaestina Boiss, laboratory experiments were first conducted on a herbivore, the stored grain pest, Tribolium castaneum Herbst, to assess chemical anti-insect activities of the gall tissue, and an effort was made to understand why these properties do not harm the aphids inside the gall. Addition of fresh gall tissue to food reduced the population growth of flour beetles. Non-polar organic extracts had contact toxicity for larvae of these insects, and an impact on the feeding preferences of the adults. These results indicate chemical anti-insect activities of the gall tissue. The research also reveals that the permeability of the gall wall to non-polar volatile compounds is important to the survival of the aphids inside the gall cavity. These findings do not allow us to reject the Enemy hypothesis in the gall-inducing aphids/Pistacia trees interactions.  相似文献   

20.
Mechanisms that allow for the coexistence of two competing species that share a trophic level can be broadly divided into those that prevent competitive exclusion of one species within a local area, and those that allow for coexistence only at a regional level. While the presence of aphid‐tending ants can change the distribution of aphids among host plants, the role of mutualistic ants has not been fully explored to understand coexistence of multiple aphid species in a community. The tansy plant (Tanacetum vulgare) hosts three common and specialized aphid species, with only one being tended by ants. Often, these aphids species will not coexist on the same plant but will coexist across multiple plant hosts in a field. In this study, we aim to understand how interactions with mutualistic ants and predators affect the coexistence of multiple species of aphid herbivores on tansy. We show that the presence of ants drives community assembly at the level of individual plant, that is, the local community, by favoring one ant‐tended species, Metopeurum fuscoviride, while preying on the untended Macrosiphoniella tanacetaria and, to a lesser extent, Uroleucon tanaceti. Competitive hierarchies without ants were very different from those with ants. At the regional level, multiple tansy plants provide a habitat across which all aphid species can coexist at the larger spatial scale, while being competitively excluded at the local scale. In this case, ant mutualist‐dependent reversal of the competitive hierarchy can drive community dynamics in a plant–aphid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号