首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a weakly biomineralized non‐trilobite artiopodan arthropod from the Guzhangian Weeks Formation of Utah. Falcatamacaris bellua gen. et sp. nov. is typified by a thin calcitic cuticle, broad cephalon without eyes or dorsal ecdysial sutures, an elongate trunk with distinctively sickle‐shaped pleural spines and a long tailspine with a bifurcate termination. The precise affinities of Falcatamacaris gen. nov. are problematic due to the presence of unique features within Artiopoda, such as the peculiar morphology of the pleural and posterior regions of the trunk. Possible affinities with aglaspidid‐like arthropods and concilitergans are discussed based on the possession of 11 trunk tergites, edge‐to‐edge articulations and overall body spinosity. The new taxon highlights the importance of the Weeks Formation Konservat‐Lagerstätte for further understanding the diversity of extinct arthropod groups in the upper Cambrian.  相似文献   

2.
The phylogenetic position of aglaspidids, a problematic group of Lower Palaeozoic arthropods of undetermined affinities, is re‐examined in the context of the major Cambrian and Ordovician lamellipedian arthropod groups. A cladistic analysis of ten genera of aglaspidids sensu stricto, six aglaspidid‐like arthropods and 42 Palaeozoic arthropod taxa indicates that Xenopoda, Cheloniellida, Aglaspidida sensu lato and Trilobitomorpha form a clade (Artiopoda Hou and Bergström, 1997 ) nested within the mandibulate stem‐lineage, thus discarding previous interpretations of these taxa as part 'of the chelicerate stem‐group (Arachnomorpha Heider, 1913 ). The results confirm an aglaspidid identity for several recently described arthropods, including Quasimodaspis brentsae, Tremaglaspis unite, Chlupacaris dubia, Australaglaspis stonyensis and an unnamed Ordovician Chinese arthropod. The problematic Bohemian arthropod Kodymirus vagans was recovered as sister taxon to Beckwithia typa, and both form a small clade that falls outside Aglaspidida sensu stricto, thus discarding eurypterid affinities for the former. The analysis does not support the phylogenetic position of Kwanyinaspis maotianshanensis at the base of Conciliterga as proposed in recent studies, but rather occupies a basal position within Aglaspidida sensu lato. The results indicate a close association of aglaspidid arthropods with xenopods (i.e. Emeraldella and Sidneyia) and cheloniellids (e.g. Cheloniellon, Duslia); the new clade “Vicissicaudata” is proposed to encompass these arthropods, which are characterized by a differentiated posterior region. The phylogenetic position of aglaspidid arthropods makes them good outgroup candidates for analysing the internal relationships within the groups that form Trilobitomorpha. This work provides a much clearer picture of the phylogenetic relationships among Lower Palaeozoic lamellipedians.  相似文献   

3.
We describe the exceptionally well-preserved non-trilobite artiopodan Zhiwenia coronata gen. et sp. nov. from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Yunnan, China. The exoskeleton consists of a cephalic shield with dorsal sutures expressed as lateral notches that accommodate stalked lateral eyes, an elongate trunk composed of 20 tergites—the first of which is reduced—and a short tailspine with marginal spines. Appendicular data include a pair of multi-segmented antennae, and homonomous biramous trunk limbs consisting of an endopod with at least seven podomeres and a flattened exopod with lamellae. Although the presence of cephalic notches and a reduced first trunk tergite invites comparisons with the petalopleurans Xandarella, Luohiniella and Cindarella, the proportions and exoskeletal tagmosis of Zhiwenia do not closely resemble those of any major group within Trilobitomorpha. Parsimony and Bayesian phylogenetic analyses consistently support Zhiwenia as sister-taxon to the Emu Bay Shale artiopodan Australimicola spriggi, and both of them as closely related to Acanthomeridion from the Chengjiang. This new monophyletic clade, Protosutura nov., occupies a basal phylogenetic position within Artiopoda as sister-group to Trilobitomorpha and Vicissicaudata, illuminates the ancestral organization of these successful euarthropods, and leads to a re-evaluation of the evolution of ecdysial dorsal sutures within the group.  相似文献   

4.
Many salamanders locomote in aquatic and terrestrial environments. During swimming, body propulsion is solely produced by the axial musculature generating lateral undulations of the trunk and tail. During terrestrial locomotion, the trunk is oscillated laterally in a standing wave, and body propulsion is achieved by concerted trunk and limb muscle action. The goal of this study was to increase our knowledge of the functional morphology of the tetrapod trunk. We investigated the muscle‐fiber‐type distribution and the anatomical cross‐sectional area of all perivertebral muscles in Ambystoma tigrinum and A. maculatum. Muscle‐fiber‐type composition was determined in serial cross‐sections based on m‐ATPase activity. Five different body segments were investigated to test for cranio‐caudal changes along the trunk. The overall fiber‐type distribution was very similar between the species, but A. tigrinum had relatively larger muscles than A. maculatum, which may be related to its digging behavior. None of the perivertebral muscles possessed a homogeneous fiber‐type composition. The M. interspinalis showed a distinct layered organization and may function to ensure the integrity of the spine (local stabilization). The M. dorsalis trunci exhibited the plesiomorphic pattern for notochordates in having a distinct superficial layer of red and intermediate fibers, which covered the central white fibers; therefore, it is suggested to function as a mobilizer and a stabilizer of the trunk, but, may also be involved in modulating body stiffness. Similarly, the M. subvertebralis showed clear regionalizations, implying functional subunits that can stabilize and mobilize the trunk as well as modulate of body stiffness. Cranio‐caudally, neither the fiber‐type composition nor the a‐csa changed dramatically, possibly reflecting the need to perform well in both aquatic and terrestrial habitats. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The annual cycles of Daphnia carinata in three fish-free ponds in southern New Zealand (Quarry, Taieri and Raupo Ponds) are described. Although breeding was continuous, the populations were frequently dominated by distinct cohorts and there was a sexual phase in spring. Growth rates, particularly in Quarry Pond, were often slow, and clutch sizes generally small. Egg and neonate sizes changed seasonally, but changes were not closely related to clutch sizes and body lengths. In Taieri Pond and Raupo Pond some D. carinata grew to 6.14 mm and carried clutches of up to 154 eggs. The potentially high fecundity associated with large size makes D. carinata a good coloniser, but our studies showed that it also survives well in poor food conditions by growing slowly and producing only 1–2 eggs per clutch. D. carinata showed marked seasonal polymorphism in tailspine length and development of head crests. In winter, crests were absent and tailspines were short and varied little with body length. Crests were first apparent, and tailspines began to elongate, in early spring, before the first appearance of a notonectid, Anisops wakefieldi. By midsummer, tailspines had increased markedly with body length but the slope of the relationship declined in autumn. Laboratory trials showed that both tailspine length and crest development increased in the presence of Anisops. These increases may be due to water-soluble factor(s) produced by Anisops.  相似文献   

6.
The structure and ontogeny of lateral‐line canals in the Rock Prickleback, Xiphister mucosus, were studied using cleared‐and‐stained specimens, and the distribution and morphology of neuromasts within lateral‐line canals were examined using histology. X. mucosus has seven cephalic canals in a pattern that, aside from four branches of the infraorbital canals, is similar to that of most teleostean fishes. Unlike most other teleosts, however, X. mucosus features multiple trunk lateral‐line canals. These include a short median posterior extension of the supratemporal canal and three paired, branching canals located on the dorsolateral, mediolateral, and ventrolateral surfaces. The ventrolateral canal (VLC) includes a loop across the ventral surface of the abdomen. All trunk canals, as well as the branches of the infraorbitals, are supported by small, dermal, ring‐like ossifications that develop independently from scales. Trunk canals develop asynchronously with the mediodorsal and dorsolateral canals (DLC) developing earliest, followed by the VLC, and, finally, by the mediolateral canal (MLC). Only the mediodorsal and DLC connect to the cephalic sensory canals. Fractal analysis shows that the complexity of the trunk lateral‐line canals stabilizes when all trunk canals develop and begin to branch. Histological sections show that neuromasts are present in all cephalic canals and in the DLC and MLC of the trunk. However, no neuromasts were identified in the VLC or its abdominal loop. The VLC cannot, therefore, directly function as a part of the mechanosensory system in X. mucosus. The evolution and functional role of multiple lateral‐line canals are discussed. J. Morphol. 276:1218–1229, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Mona A. Mort 《Hydrobiologia》1989,171(2):159-170
Phenotypic change is studied in a cyclomorphicDaphnia galeata mendotae population known from previous studies to be clonally diverse. Morphological analyses revealed cyclical changes in both adult and juvenile helmet length and tailspine length which were: 1) strongly correlated with mean water temperature; and 2) repeated annually during the 3-year study period. Field populations exhibited high (5% to 30%) coefficients of variation (CV) for both helmet length and tailspine length; the CV also exhibited seasonal fluctuations such that it was lowest in late summer. The period of highestDaphnia helmet development coincides with peak densities of the common invertebrate predatorsChaoborus andLeptodora. The fluctuations in CV may be due to both differential phenotypic expression of the coexisting clones and invertebrate predation.  相似文献   

8.
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring‐EXported Protein‐1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob‐associated histidine‐rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether‐like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α‐helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.  相似文献   

9.
Although the anuran pelvis is thought to be adapted for jumping, the function of the iliosacral joint has seen little direct study. Previous work has contrasted the basal “ lateral‐bender ” pelvis from the “ rod‐like ” pelvis of crown taxa hypothesized to function as a sagittal hinge to align the trunk with take‐off forces. We compared iliosacral movements and pelvic motor patterns during jumping in the two pelvic types. Pelvic muscle activity patterns, iliosacral anteroposterior (AP) movements and sagittal bending of the pelvis during the take‐off and landing phases were quantified in lateral bender taxa Ascaphus (Leiopelmatidae) and Rhinella (Bufonidae) and the rod‐like Lithobates (Ranidae). All three species exhibit sagittal extension during take‐off, therefore, both pelvic types employ a sagittal hinge. However, trunk elevation occurs significantly earlier in the anuran rod‐like pelvis. Motor patterns confirm that the piriformis muscles depress the urostyle while the longissimus dorsi muscles elevate the trunk during take‐off. However, the coccygeoiliacus muscles also produce anterior translation of the sacrum on the ilia. A new model illustrates how AP translation facilitates trunk extension in the lateral‐bender anurans that have long been thought to have limited sagittal bending. During landing, AP translation patterns are similar because impact forces slide the sacrum from its posterior to anterior limits. Sagittal flexion during landing differs among the three taxa depending on the way the species land. AP translation during landing may dampen impact forces especially in Rhinella in which pelvic function is tuned to forelimb‐landing dynamics. The flexibility of the lateral‐bender pelvis to function in sagittal bending and AP translation helps to explain the retention of this basal configuration in many anurans. The novel function of the rod‐like pelvis may be to increase the rate of trunk elevation relative to faster rates of energy release from the hindlimbs enabling them to jump farther. J. Morphol. 277:1539–1558, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Cycas dharmrajii L.J.Singh (Cycadaceae), a new species from the Andaman Islands, India is described and illustrated, and its conservation status is assessed. An abnormal branching habit of the giant trunk, its swollen base, often branched, polymorphic aerial roots, medium‐sized leaves, megasporophylls with well‐defined 10–28 paired lateral hook‐like structures and 1–3 pairs of ovules, 2‐schizo‐lysigenous mucilage canals in leaflet, and characteristic pitting on the periclinal walls of the epidermal cells of the leaflets distinguishes it from all previously known species. A key to the species of Cycas from the Andaman and Nicobar Islands is also provided.  相似文献   

11.
《Journal of morphology》2017,278(9):1229-1240
Most suction‐feeding, aquatic vertebrates create suction by rapidly enlarging the oral cavity and pharynx. Forceful enlargement of the pharynx is powered by longitudinal muscles that retract skeletal elements of the hyoid, more caudal branchial arches, and, in many fish, the pectoral girdle. This arrangement was thought to characterize all suction‐feeding vertebrates. However, it does not exist in the permanently aquatic, tongueless Pipa pipa , an Amazonian frog that can catch fish. Correlating high‐speed (250 and 500 fps) video records with anatomical analysis and functional tests shows that fundamental features of tetrapod body design are altered to allow P. pipa to suction‐feed. In P. pipa , the hyoid apparatus is not connected to the skull and is enclosed by the pectoral girdle. The major retractor of the hyoid apparatus arises not from the pectoral girdle but from the femur, which lies largely within the soft tissue boundaries of the trunk. Retraction of the hyoid is coupled with expansion of the anterior trunk, which occurs when the hypertrophied ventral pectoral elements are depressed and the urostyle and sacral vertebra are protracted and slide forward on the pelvic girdle, thereby elongating the entire trunk. We suggest that a single, robust pair of muscles adduct the cleithra to depress the ventral pectoral elements with force, while modified tail muscles slide the axial skeleton cranially on the pelvic girdle. Combined hyoid retraction, axial protraction, and pectoral depression expand the buccopharyngeal cavity to a volume potentially equal to that of the entire resting body of the frog. Pipa may be the only tetrapod vertebrate clade that enlarges its entire trunk during suction‐feeding.  相似文献   

12.
Although generally assumed to be filter feeders, branchiopod crustaceans of the laevicaudatan genus Lynceus O.F. Müller, 1776 possess no filters and do not collect food by filtration. Investigated species of these bivalved, multi‐limbed animals have basically benthic habits and collect particulate food, mostly detritus, by scraping or sweeping it from surfaces with suitably armed trunk limbs. L. simiaefacies Harding, 1941, known only from a desert pool in Yemen, has trunk limbs that are armed with particularly robust scrapers and much of the complexity of these limbs and their armature is related to the collection and manipulation of detrital food by mechanical means. Material collected by scrapers borne distally on the more anterior limbs – although the anteriormost is very lightly armed – is swept posteriorly and dorsally, assisted by the armature of the more proximal endites, towards the posterior end of a deep food groove, whence it is passed anteriorly by the substantial gnathobases of the trunk limbs. The necessary movements of the trunk limbs are facilitated by a system of intrinsic muscles that enable individual endites to be moved independently – a remarkable specialized feature of a phyllopodial appendage. Before it enters the food groove, collected material is at all times confined to a narrow median chamber, or cage, between the two sets of opposed trunk limbs that extends over most of the anterior limbs – which are the largest. Each cage wall serves as a screen, covering the limbs of its side and is made up of long setose screening setae that superficially resemble coarse filter setae, and arise from the more proximal endites of most of the anterior trunk limbs. The screens prevent collected material from entering the inter‐limb spaces into which water flows during each cycle of trunk limb movements, where its presence would be disastrous. They do not interfere with the spines of the proximal endites that can protrude between them. The screens do not extend to the extreme posterior end of the trunk limb series where a complex and dense array of specialized spines of the short posterior trunk limbs completes the task of sweeping food material into the food groove. Material is passed anteriorly along the food groove by the trunk limb gnathobases and the small but robustly armed maxillules to the mandibles. Although constructed on the basic, boat‐like, branchiopod plan, in contrast to those of most particle‐feeding branchiopods whose mandibles have a broad masticatory surface, those of Lynceus have a masticatory surface that is narrow and elongate in the antero‐posterior plane. Interestingly, while the number of ‘teeth’ into which this surface is elaborated is few in most species of the genus, inviting comparison with a similar attribute in the Notostraca, L. simiaefacies has more numerous, smaller teeth. Although following the branchiopod plan, the mandibular musculature appears to have its own distinctive features but remains to be investigated in properly fixed material. At its distal extremity the oesophagus is differentiated into a small but complex gizzard, of which there appears to be no parallel in any other branchiopod order. This is described for the first time. Although provided with natatory antennae, species of Lynceus also employ their trunk limbs as organs of propulsion. In L. gracilicornis (Packard, 1871) the carapace valves can gape to more than 90°, which allows the trunk limbs to make a contribution to propulsion in a manner akin to that of the Anostraca. In this respect the Laevicaudata appears to stand in contrast to the Spinicaudata, in most species of which the trunk limbs contribute little or nothing to locomotion. More information is needed on representatives of both orders, which have received little study as living animals. Brief comments are made on the systematic position of the Laevicaudata, about which much remains to be resolved. © 2009 The Natural History Museum. Journal compilation © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 513–541.  相似文献   

13.
New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C‐terminus extension (cyspep) can play a decisive role in the host‐parasite interaction. The interaction between cyspep‐derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep‐derived peptides, previously identified as capable of interacting with H‐2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H‐2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H‐2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H‐2 proteins occurring at ~25 Å. Proteins 2016; 84:473–487. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
The aminoglycoside modifying enzyme (AME) ANT(2″)‐Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside‐modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well‐defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)‐Ia are presented, and suggest that ATP‐aminoglycoside binding repositions the nucleotidyltransferase (NT) and C‐terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site‐directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub‐class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C‐terminal tail of ANT(2″)‐Ia, advocate toward design of kanamycin‐derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin‐resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.  相似文献   

15.
All trunk segments in the pill millipede Glomeris marginata (Myriapoda: Diplopoda) are initially patterned genetically, (as visualized by the embryonic expression pattern of the even‐skipped gene) and formed morphologically, (as visualized by 4‐6‐diamidin‐2‐phenylindol stained embryos) in a single segmental period. In addition, formation of every nascent trunk segment concerns ventral as well as dorsal segmental units. Only after the formation of the nascent posterior trunk segments, the dorsal segmental units of two adjacent segments fuse to form a single dorsal segmental unit that subsequently covers two ventral leg‐bearing segmental units. The formation of a diplosegmental unit, or in short a diplosegment, is thus the result of dorsal fusion of embryonic tissue and not the result of any splitting‐process or fusion of dorsal tergites. The new data also argue against heterochrony as a primary causative factor for the formation of the diplosegments during the formation of dorsal versus ventral segmental units. Furthermore, no evidence was found supporting the hypothesis that anterior trunk segments in diplopods represent degenerate diplosegments. Two possible scenarios arise from the ontogenetic data presented here, whether this represents an ancestral feature of the diplopods, or alternatively if they represent an isolated case only found in Glomeris (and close relatives). If the former is the case, my work may provide an impressive example of Haeckel's recapitulation theory.  相似文献   

16.
17.
Wnt signalling regulates cell proliferation and cell fate determination during embryogenesis. However, little is known about the developmental role of one Wnt family member, Wnt‐3, during avian development. To investigate the possible functions of Wnt‐3, its expression pattern was determined using whole‐mount in situ hybridization. Wnt‐3 is expressed in important signalling centres, including the dorsal neural tube, Hensen's node and the AER (apical ectodermal ridge). Most interestingly, Wnt‐3 is expressed in the dorsal neural tube as a gradient, with the strongest expression anterior in the trunk. Furthermore, this study showed that Wnt‐3 and Wnt‐3a play a different role in neural crest lineages derived from different axial level of neural tube. Wnt‐3 might be involved in proliferation of neural crest lineages, whereas Wnt‐3a plays an important role in melanogenesis in vagal. However, both Wnt‐3 and Wnt‐3a cause a significant increase in melanogenesis in the trunk neural crest lineage.  相似文献   

18.
The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running (“axial constraint”) which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator‐escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber‐type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator‐escape and foraging behaviors. Using refined enzyme‐histochemical protocols, muscle fiber types were differentiated in serial cross‐sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A detailed exploration of growth and trunk segmentation of the oryctocephalid trilobite, Duyunaspis duyunensis Chang & Chien in Zhou et al. 1977, from the lower Cambrian (Stage 4, Series 2) Balang Formation in western Hunan Province, South China, is presented. Because of the excellent preservation, the complete post‐protaspid ontogenetic series from merapsid degree 0 to the holaspid phase is described. The ontogenetic series reveals new information on morphological changes such as the migration of the posterior branch of the facial sutures (from proparian to opisthoparian) and contraction of the posteromedial notch in the pygidium. The abundance of articulated specimens available from a narrow stratigraphical interval makes this material singularly useful for studying the morphogenesis and post‐embryonic growth of D. duyunensis in comparison with other oryctocephalids. Strong evidence that multiple numbers of pygidial segment are recognized in each meraspid degree as well as in the holaspid period showed unusual intraspecific variability in the rate of trunk segmentation, providing insights into how Cambrian subisopygous trilobites controlled their body patterning, including size, shape and trunk segment number in both thorax and caudal plate during growth.  相似文献   

20.
Objective: The aims of this study were to investigate the body fat distribution pattern in prepubertal Chinese children and to investigate the relationship between central fat distribution and specific biomarkers of cardiovascular disease. Research Methods and Procedures: The study was conducted in an urban Mainland Chinese (Jinan, Shandong) sample of children using a cross‐sectional design. Pubertal status was determined by Tanner criteria. Measurements included weight, height, waist circumference, DXA measures of total body fat and trunk fat; fasting serum measures of glucose, insulin, triglyceride, cholesterol, high‐density lipoprotein‐cholesterol; and systolic and diastolic blood pressure. Multiple regression models were developed with the biomarkers of cardiovascular risk factor as the dependent variables, and adjustments were made for significant covariates, including sex, age, height, weight, waist circumference, total body fat, trunk fat, and interactions. Results: A total of 247 healthy prepubertal subjects were studied. After co‐varying for age, weight, height, and extremity fat (the sum of arm fat and leg fat), girls had greater trunk fat than boys (p < 0.0001, R2 for model = 0.95). Insulin and triglyceride were positively related to central fat measured by DXA‐trunk fat (p < 0.05) but not related to the waist circumference. In the blood pressure model, waist circumference was a significant predictor of both systolic blood pressure and diastolic blood pressure, while DXA‐trunk fat was associated with diastolic blood pressure only. Significant interactions between sex and trunk fat, and sex and total fat, were found in relation to diastolic blood pressure. Discussion: In prepubertal Chinese children, greater trunk fat was significantly associated with higher insulin and triglyceride in boys and girls and was associated with higher diastolic blood pressure in boys only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号