首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SH3 domain of the p85alpha subunit of phosphatidylinositol 3 kinase has been found to form amyloid fibrils in vitro under acidic conditions. PI3-SH3 is peculiar due to a large insertion of 15 amino acid residues in the n-Src loop when compared with more canonical members of the family. Spectrin-SH3 (SPC-SH3) with a shorter loop does not form fibrils under any of our conditions tested. Thus, it could be that the longer loop could play a role in amyloid formation. To investigate this we have engineered two chimeras containing the common core of the PI3-SH3 and SPC-SH3 with an exchanged n-Src loop. Thermodynamic and kinetic analyses show that the two chimeras are less stable than the parent proteins, but useful for our comparative purposes they have similar stability. Neither stability, nor folding rates, or pH transition can be invoked as being responsible for the amyloid formation in the PI3-SH3 domain. Substitution of the long n-Src loop in PI3-SH3 by that of SPC-SH3 does not prevent fibril formation. The SPC-SH3 with the PI3-SH3 n-Src loop is in an A-state at low pH and forms beta-sheet amorphous aggregates, but not amyloid fibrils. Thus, we conclude that, for a protein to form ordered fibrils, a delicate balance between solubility of non-native states to allow efficient nucleation and the formation of amorphous aggregates, must be achieved. It is the amino acid residue sequence of the protein and probably its parts that play a determinant role in shifting this balance in one direction or the other.  相似文献   

2.
The SH3 domains are small protein modules of 60-85 amino acid residues that are found in many proteins involved in intracellular signal transduction. The SH3 domain of the p85alpha subunit of bovine phosphatidylinositol 3'-kinase (PI3-SH3) under acidic solution adopts a compact denatured state from which amyloid fibrils are readily formed. This aggregation process has been found to be modulated substantially by solution conditions. Here, we have analyzed the conformational features of the native and acid denatured states of PI3-SH3 by limited proteolysis experiments using proteinase K and pepsin, respectively. Moreover, we have analyzed the propensity of PI3-SH3 to be hydrolyzed by pepsin at different stages in the process of aggregation and amyloid formation at pH 1.2 and 2.0 and compared the sites of proteolysis under these conditions with the conformational features of both native and aggregated PI3-SH3. The results demonstrate that the denatured state of PI3-SH3 formed at low pH is relatively resistant to proteolysis, indicating that it is partially folded. The long loop connecting beta-strands b and c in the native protein is the region in this structure most susceptible to proteolysis. Remarkably, aggregates of PI3-SH3 that are formed initially from this denatured state in acid solution display enhanced susceptibility to proteolysis of the long loop, suggesting that the protein becomes more unfolded in the early stages of aggregation. By contrast, the more defined amyloid fibrils that are formed over longer periods of time are completely resistant to proteolysis. We suggest that the protein aggregates formed initially are relatively dynamic species that are able readily to reorganize their interactions to enable formation of very well ordered fibrillar structures. In addition, the disordered and non-native character of the polypeptide chains in the early aggregates could be important in determining the high cytotoxicity that has been revealed in previous studies of these species.  相似文献   

3.
Lorena Varela 《FEBS letters》2009,583(4):801-3810
We investigated the relationship between thermodynamic stability and amyloid aggregation propensity for a set of single mutants of the alpha-spectrin SH3 domain (Spc-SH3). Whilst mutations destabilizing the domain at position 56 did not enhance fibrillation, the N47A mutation increased the rate of amyloid fibril formation by 10-fold. Even under conditions of identical thermodynamic stability, the aggregation rate was much higher for the N47A mutant than for the WT domain. We conclude that the N47A mutation does not change the apparent mechanism of fibrillation or the morphology of the amyloid fibrils, and that its amyloidogenic property is due to its effect upon the rate of the conformational events leading to nucleation and not to its overall destabilizing effect.  相似文献   

4.
The formation of amyloid fibrils by the SH3 domain of the alpha-subunit of bovine phosphatidylinositol-3'-kinase (PI3-SH3) has been investigated under carefully controlled solution conditions. NMR and CD characterisation of the denatured states from which fibrils form at low pH show that their properties can be correlated with the nature of the resulting aggregates defined by EM and FTIR spectroscopy. Compact partially folded states, favoured by the addition of anions, are prone to precipitate rapidly into amorphous species, whilst well-defined fibrillar structures are formed slowly from more expanded denatured states. Kinetic data obtained by a variety of techniques show a clear lag phase in the formation of amyloid fibrils. NMR spectroscopy shows no evidence for a significant population of small oligomers in solution during or after this lag phase. EM and FTIR indicate the presence of amorphous aggregates (protofibrils) rich in beta-structure after the lag phase but prior to the development of well-defined amyloid fibrils. These observations strongly suggest a nucleation and growth mechanism for the formation of the ordered aggregates. The morphologies of the fibrillar structures were found to be highly sensitive to the pH at which the protein solutions are incubated. This can be attributed to the effect of small perturbations in the electrostatic interactions that stabilise the contacts between the protofilaments forming the amyloid fibrils. Moreover, different hydrogen bonding patterns related to the various aggregate morphologies can be distinguished by FTIR analysis.  相似文献   

5.
To understand and tackle amyloid-related diseases, it is crucial to investigate the factors that modulate amyloid formation of proteins. Our previous studies proved that the N47A mutant of the α-spectrin SH3 (Spc-SH3) domain forms amyloid fibrils quickly under mildly acidic conditions. Here, we analyze how experimental conditions influence the kinetics of assembly and the final morphology of the fibrils. Early formation of curly fibrils occurs after a considerable conformational change of the protein and the concomitant formation of small oligomers. These processes are strongly accelerated by an increase in salt concentration and temperature, and to a lesser extent by a reduction in pH. The rate-limiting step in these events has a high activation enthalpy, which is significantly reduced by an increase in NaCl concentration. At low-to-moderate NaCl concentrations, the curly fibrils convert to straight and twisted amyloid fibrils after long incubation times, but only in the presence of soluble species in the mixture, which suggests that the curly fibrils and the twisted amyloid fibrils are diverging assembly pathways. The results suggest that the influence of environmental variables on protein solvation is crucial in determining the nucleation kinetics, the pathway of assembly, and the final fibril morphology.  相似文献   

6.
One of the current challenges facing biomedical researchers is the need to develop new approaches in preventing amyloid formation that is associated with disease. While amyloid is generally considered detrimental to the cell, examples of amyloids that maintain a benign nature and serve a specific function exist. Here, we review our work on the repeat domain (RPT) of the functional amyloid Pmel17. Specifically, the RPT domain contributes in generating amyloid fibrils in melanosomes upon which melanin biosynthesis occurs. Amyloid formation of RPT was shown to be pH sensitive, aggregating only under acidic conditions associated with melanosomal pH. Furthermore, preformed fibrils rapidly dissolved at neutral pH to generate benign monomeric species. From a biological perspective, this unique reversible aggregation/disaggregation is a safeguard against an event of releasing RPT fibrils in the cytosol, resulting in rapid fibril unfolding and circumventing cytotoxicity. Understanding how melanosomes preserve a safe environment will address vital questions that remain unanswered with pathological amyloids.  相似文献   

7.
The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.  相似文献   

8.
The Src-homology region 3 domain of chicken alpha-spectrin (Spc-SH3) is a small two-state folding protein, which has never been described to form amyloid fibrils under any condition investigated so far. We show here that the mutation of asparagine 47 to alanine at the distal loop, which destabilises similarly the native and folding transition states of the domain, induces the formation of amyloid fibrils under mild acid conditions. Amyloid aggregation of the mutant is enhanced by the increase in temperature, protein concentration and NaCl concentration. The early stages of amyloid formation have been monitored as a function of time and temperature using a variety of biophysical methods. Differential scanning calorimetry experiments under conditions of amyloid formation have allowed the identification of different thermal transitions corresponding to conformational and aggregation processes as well as to the high-temperature disaggregation and unfolding of the amyloid fibrils. Aggregation is preceded by a rapid conformational change in the monomeric domain involving about 40% of the global unfolding enthalpy, considerable change in secondary structure, large loss of tertiary structure and exposure of hydrophobic patches to the solvent. The conformational change is followed by formation of a majority of oligomeric species with apparent hydrodynamic radius between 2.5 nm and 10nm, depending on temperature, together with the appearance and progressive growth of protofibrillar aggregates. After these early aggregation stages, long and curved fibrils of up to several micrometers start to develop by elongation of the protofibrils. The calorimetric data indicate that the specific enthalpy of fibril disaggregation and unfolding is relatively low, suggesting a low density of interactions within the fibril structure as compared to the native protein and a main entropy contribution to the stability of the amyloid fibrils.  相似文献   

9.
The pre-melanosomal protein (Pmel17) aggregates within melanosomes to form functional amyloid fibrils that facilitate melanin polymerization. The repeat domain (RPT) of Pmel17 fibrillates under strict acidic melanosomal pH. Alternative splicing results in a shortened repeat domain (sRPT), which also forms amyloid fibrils. Here, we explored the effects of pH and protein concentration on sRPT aggregation by monitoring the intrinsic fluorescence of the sole tryptophan at position 381 (381W). 381W emission properties revealed changes of local environment polarity for sRPT fibrils formed at different pH. At pH 4, fibrils formed rapidly with no lag phase. A high 381W intensity was observed with a slight blue shift (10 nm). These fibrils underwent further structural rearrangements at intermediate pH (5–6), mirroring that of melanosome maturation, which initiates at pH 4 and increases to near neutral pH. In contrast, typical sigmoidal kinetics were observed at pH 6 with slower rates and 381W exhibited quenched emission. Interestingly, biphasic kinetics were observed at pH 5 in a protein concentration-dependent manner. A large 381W blue shift (23 nm) was measured, indicating a more hydrophobic environment for fibrils made at pH 5. Consistent with 381W fluorescence, Raman spectroscopy revealed molecular level perturbations in sRPT fibrils that were not evident from circular dichroism, transmission electron microscopy, or limited proteolysis analysis. Finally, sRPT fibrils did not form at pH ≥7 and preformed fibrils rapidly disaggregated under these solution conditions. Collectively, this work yields mechanistic insights into pH-dependent sRPT aggregation in the context of melanosome maturation.  相似文献   

10.
The formation of aggregates including amyloid fibrils in the peptide fragment of non-amyloid-beta component (NAC(1-13)) was investigated under a variety of solution conditions. Two types of sample preparation method from neutral and acidic conditions were examined. Electron microscopy observation showed amorphous aggregates in the sample at pH 4.5 adjusted from the neutral condition. The CD and HPLC quantitative analyses indicated that the formation of the amorphous aggregate did not accompany a conformational conversion from a random coil in the sample solution. The analyses of pKa values determined by pH titration experiments in NMR spectroscopy indicated that the protonation of the carboxyl group of the N-terminal glutamic acid triggers the aggregation of NAC(1-13). On the other hand, electron microscopy observation showed that the samples at pH 2.2 and 4.5 adjusted from an initial pH of 2.2 form fibrils. A beta-structure was detected by CD spectroscopy in the 1 mM NAC(1-13) at pH 2.2 immediately after preparation. The CD analyses of samples at different concentrations and temperatures indicated that 1 mM NAC(1-13) immediately after preparation at pH 2.2 was oligomerized. The quantity of the beta-structure was increased depending on the Incubation time. The results strongly suggested that the beta-conformational oligomers play a critical role for the fibril nucleus.  相似文献   

11.
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.  相似文献   

12.
Aggregation of the disordered protein α‐synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre‐fibrillar oligomers of misfolded α‐synuclein are thought to be the key toxic entities, and α‐synuclein misfolding can propagate in a prion‐like way. We explored whether a compound with anti‐prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe‐TMPyP, was also active against α‐synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross‐correlation spectroscopy, we found that Fe‐TMPyP inhibited small oligomer formation in a dose‐dependent manner. Fe‐TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe‐TMPyP bound to monomeric α‐synuclein with a stoichiometry of 2, and two‐dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe‐TMPyP and the C‐terminus of the protein. These results suggest commonalities among aggregation mechanisms for α‐synuclein and the prion protein may exist that can be exploited as therapeutic targets.  相似文献   

13.
The HypF N-terminal domain has been found to convert readily from its native globular conformation into protein aggregates with the characteristics of amyloid fibrils associated with a variety of human diseases. This conversion was achieved by incubation at acidic pH or in the presence of moderate concentrations of trifluoroethanol. Electron microscopy showed that the fibrils grown in the presence of trifluoroethanol were predominantly 3-5 nm and 7-9 nm in width, whereas fibrils of 7-9 nm and 12-20 nm in width prevailed in samples incubated at acidic pH. These results indicate that the assembly of protofilaments or narrow fibrils into mature amyloid fibrils is guided by interactions between hydrophobic residues that may remain exposed on the surface of individual protofilaments. Therefore, formation and isolation of individual protofilaments appears facilitated under conditions that favor the destabilization of hydrophobic interactions, such as in the presence of trifluoroethanol.  相似文献   

14.
The detailed mechanism of the pathology of α-synuclein in the Parkinson’s disease has not been clearly elucidated. Recent studies suggested a possible chaperone-like role of the acidic C-terminal region of α-synuclein in the formation of amyloid fibrils. It was also previously demonstrated that the α-synuclein amyloid fibril formation is accelerated by mutations of proline residues to alanine in the acidic region. We performed replica exchange molecular dynamics simulations of the acidic and nonamyloid component (NAC) domains of the wild type and proline-to-alanine mutants of α-synuclein under various conditions. Our results showed that structural changes induced by a change in pH or an introduction of mutations lead to a reduction in mutual contacts between the NAC and acidic regions. Our data suggest that the highly charged acidic region of α-synuclein may act as an intramolecular chaperone by protecting the hydrophobic domain from aggregation. Understanding the function of such chaperone-like parts of fibril-forming proteins may provide novel insights into the mechanism of amyloid formation.  相似文献   

15.
Hong DP  Ahmad A  Fink AL 《Biochemistry》2006,45(30):9342-9353
Human insulin, which consists of disulfide cross-linked A and B polypeptide chains, readily forms amyloid fibrils under slightly destabilizing conditions. We examined whether the isolated A and B chain peptides of human insulin would form fibrils at neutral and acidic pH. Although insulin exhibits a pH-dependent lag phase in fibrillation, the A chain formed fibrils without a lag at both pHs. In contrast, the B chain exhibited complex concentration-dependent fibrillation behavior at acidic pH. At higher concentrations, e.g., >0.2 mg/mL, the B chains preferentially and rapidly formed stable protofilaments rather than mature fibrils upon incubation at 37 degrees C. Surprisingly, these protofilaments did not convert into mature fibrils. At lower B chain concentrations, however, mature fibrils were formed. The explanation for the concentration dependence of B chain fibrillation is as follows. The B chains exist as soluble oligomers at acidic pH, have a beta-sheet rich conformation as determined by CD, and bind ANS strongly, and these oligomers rapidly form dead-end protofilaments. However, under conditions in which the B chain monomer is present, such as low B chain concentration (<0.2 mg/mL) or in the presence of low concentrations of GuHCl, which dissociates the soluble oligomers, mature fibrils were formed. Thus, both A and B chain peptides can form amyloid fibrils, and both are likely to be involved in the interactions leading to the fibrillation of intact insulin.  相似文献   

16.
Some of the lysozyme mutants in humans cause systemic amyloidosis. Hen egg white lysozyme (HEWL) has been well studied as a model protein of amyloid fibrils formation. We previously identified an amyloid core region consisting of nine amino acids (designated as the K peptide), which is present at 54-62 in HEWL. The K peptide, with tryptophan at its C- terminus, has the ability of self-aggregation. In the present work we focused on its structural properties in relation to the formation of fibrils. The K peptide alone formed definite fibrils having β-sheet structures by incubation of 7 days under acidic conditions at 37°C. A substantial number of fibrils were generated under this pH condition and incubation period. Deletion and substitution of tryptophan in the K peptide resulted in no formation of fibrils. Tryptophan 62 in lysozyme was suggested to be especially crucial to forming amyloid fibrils. We also show that amyloid fibrils formation of the K peptide requires not only tryptophan 62 but also a certain length containing hydrophobic amino acids. A core region is involved in the significant formation of amyloid fibrils of lysozyme.  相似文献   

17.
Amyloid fibril formation is widely believed to be a generic property of polypeptide chains. In the present study, alpha-chymotrypsin, a well-known serine protease has been driven toward these structures by the use of two different conditions involving (I) high temperature, pH 2.5, and (II) low concentration of trifluoroethanol (TFE), pH 2.5. A variety of experimental methods, including fluorescence emission, dynamic quenching, steady-state fluorescence anisotropy, far-UV circular dichroism, nuclear magnetic resonance spectroscopy, and dynamic light scattering were employed to characterize the conformational states of alpha-chymotrypsin that precede formation of amyloid fibrils. The structure formed under Condition I was an unfolded monomer, whereas an alpha-helical rich oligomer was induced in Condition II. Both the amyloid aggregation-prone species manifested a higher solvent exposure of hydrophobic and aromatic residues compared with the native state. Upon incubation of the protein in these conditions for 48 h, amyloid-like fibrils were formed with diameters of about 10-12 nm. In contrast, at neutral pH and low concentration of TFE, a significant degree of amorphous aggregation was observed, suggesting that charge neutralization of acidic residues in the amyloid core region has a positive influence on amyloid fibril formation. In summary, results presented in this communication suggest that amyloid fibrils of alpha-chymotrypsin may be obtained from a variety of structurally distinct conformational ensembles highlighting the critical importance of protein evolution mechanisms related to prevention of protein misfolding.  相似文献   

18.
Amyloid fibril formation is a distinctive hallmark of a number of degenerative diseases. In this process, protein monomers self-assemble to form insoluble structures that are generally referred to as amyloid fibrils. We have induced in vitro amyloid fibril formation of a PDZ domain by combining mechanical agitation and high ionic strength under conditions otherwise close to physiological (pH 7.0, 37°C, no added denaturants). The resulting aggregates enhance the fluorescence of the thioflavin T dye via a sigmoidal kinetic profile. Both infrared spectroscopy and circular dichroism spectroscopy detect the formation of a largely intermolecular β-sheet structure. Atomic force microscopy shows straight, rod-like fibrils that are similar in appearance and height to mature amyloid-like fibrils. Under these conditions, before aggregation, the protein domain adopts an essentially native-like structure and an even higher conformational stability (ΔGU-FH2O). These results show a new method for converting initially folded proteins into amyloid-like aggregates. The methodological approach used here does not require denaturing conditions; rather, it couples agitation with a high ionic strength. Such an approach offers new opportunities to investigate protein aggregation under conditions in which a globular protein is initially folded, and to elucidate the physical forces that promote amyloid fibril formation.  相似文献   

19.
The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils.  相似文献   

20.
Understanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation. The curves of native state depletion also follow high-order irreversible kinetics. The analysis is consistent with the existence of low-populated and heterogeneous oligomeric precursors of fibrillation that form by association of partially unfolded protein monomers. An increase in NaCl concentration accelerates fibrillation but reduces the apparent order of the nucleation kinetics; and a double mutant (K43A, N47A) Spc-SH3 domain, largely unfolded under native conditions and prone to oligomerize, fibrillates with apparent first order kinetics. On the light of these observations, we propose a simple kinetic model for the nucleation event, in which the monomer conformational unfolding and the oligomerization of an amyloidogenic intermediate are rapidly pre-equilibrated. A conformational change of the polypeptide chains within any of the oligomers, irrespective of their size, is the rate-limiting step leading to the amyloid nuclei. This model is able to explain quantitatively the initial rates of aggregation and the observed variations in the apparent order of the kinetics and, more importantly, provides crucial thermodynamic magnitudes of the processes preceding the nucleation. This kinetic approach is simple to use and may be of general applicability to characterize the amyloidogenic intermediates and oligomeric precursors of other disease-related proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号