首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and simple HPTLC method was developed for estimation of ranitidine in human urine. The drug was extracted from urine after basification using dichloromethane. Dichloromethane extract was spotted on silica gel 60 F254 TLC plate and was developed in a mixture of ethyl acetate-methanol-ammonia (35:10:5 v/v) as the mobile phase and scanned at 320 nm. The RF value obtained for the drug was 0.67 +/- 0.03. The method was validated in terms of linearity (50-400 ng/spot), precision and accuracy. The average recovery of ranitidine from urine was 89.35%. The proposed method was applied to evaluate bioequivalence of two marketed ranitidine tablet formulations (150 mg, Formulation I and Formulation 2) using a crossover design by comparing urinary excretion data for unchanged ranitidine in six healthy volunteers. Various pharmacokinetic parameters like peak excretion rate [(dAU/dt)max], time for peak excretion rate (tmax), AUC0-24, AUC0-infinity, cumulative amount excreted were calculated for both formulations and subjected to statistical analysis. The relative bioavailability of Formulation 2 with respect to Formulation 1 was 93.76 and 95.31% on the basis of AUC0-24 and cumulative amount excreted, respectively. Statistical comparison of various pharmacokinetic parameters indicated that the two ranitidine tablet formulations are bioequivalent.  相似文献   

2.
A rapid, selective and highly sensitive reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of levosulpiride, 5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxy benzamide, in human serum and urine. The method involved the extraction with a dichloromethane followed by back-extraction into 0.025 M sulfuric acid. HPLC analysis was carried out using reversed-phase isocratic elution with a Luna C(18)(2) 5 microm column, a mobile phase of acetonitrile-0.01 M potassium hydrogen phosphate (30:70, v/v, adjusted to pH 8.5 with triethylamine), and a fluorescence detector with excitation at 300 nm and emission at 365 nm. The chromatograms showed good resolution and sensitivity and no interference of human serum and urine. The calibration curves were linear over the concentration range 0.25-200 ng/ml for serum and 0.2-20 microg/ml for urine with correlation coefficients greater than 0.997. Intra- and inter-day assay precision and accuracy fulfilled the international requirements. The mean absolute recovery for human serum was 89.8+/-3.7%. The lower limits of quantitation in human serum and urine were 0.25 ng/ml and 0.2 microg/ml, respectively, which were sensitive enough for pharmacokinetic studies. Stability studies showed that levosulpiride in human serum and urine was stable during storage, or during the assay procedure. This method was successfully applied to the study of pharmacokinetics of levosulpiride in human volunteers following a single oral administration of levosulpiride (25 mg) tablet.  相似文献   

3.
We have established a highly sensitive high-performance liquid chromatographic method for the determination of an anticancer drug, UCN-01, in human plasma or urine. Using a fluorescence detector set at an excitation wavelength of 310 nm and emission monitored at 410 nm, there was a good linearity for UCN-01 in human plasma (r=0.999) or urine (r=0.999) at concentrations ranging from 0.2 to 100 ng/ml or 1 to 400 ng/ml, respectively. For intra-day assay, in plasma samples, the precision and accuracy were 1.8% to 5.6% and −10.0% to 5.2%, respectively. For inter-day assay, the precision and accuracy were 2.0% to 18.2% and 2.4% to 10.0%, respectively. In urine samples, the intra- and inter-day precision and accuracy were within 3.9% and ±2.7%, respectively. The lower limit of quantification (LLOQ) was set at 0.2 ng/ml in plasma and 1 ng/ml in urine. UCN-01 in plasma samples was stable up to two weeks at −80°C and also up to four weeks in urine samples. This method could be very useful for studying the human pharmacokinetics of UCN-01.  相似文献   

4.
A quantitative liquid chromatography positive ion electrospray tandem mass spectrometric method for the simultaneous determination of sulforaphane, iberin and their metabolites in human urine and plasma is described. The stability of the metabolites was determined in aqueous solution and in human plasma. Gradient liquid chromatographic separation was performed on a Zorbax SB-Aq 3.5 microm (100 x 2.1mm) column, using a mobile phase (flow rate 0.25 mL/min) consisting of ammonium acetate buffer at pH 4 and acetonitrile. Butyl thiocarbamoyl l-cysteine was used as internal standard. The assay was linear (r(2)>0.99) over the range of 0.03-300 microM in urine and 0.03-15 microM in plasma with intra- and inter-day assay precision (<10% CV) and accuracy (<20%). The lower limits of quantitation were in the range of 10-150 nmol/L. The method has been used to report, for the first time, individual quantitative measurement of each of the mercapturic acid pathway metabolites of sulforaphane and iberin in both human plasma and urine following a dietary study of broccoli consumption.  相似文献   

5.
The performance of a number of liquid—solid systems, consisting of mixtures of buffers (0.05 M) and methanol as mobile phase and methyl-silica as stationary phase, were investigated with respect to their use in the separation of 1,4-benzodiazepines by reversed-phase high-performance liquid chromatography with UV detection at 254 nm. Phase system selectivities and column efficiencies were determined. A nomogram is presented from which the chromatographic parameters can be calculated.A complete separation of nine benzodiazepines within 12 min has been achieved, using methyl-silica as the stationary phase and 50% methanol as the eluent.The results were applied to the development of a method for the determination of therapeutic levels of diazepam and its metabolites in human serum, urine and saliva. The first step in the analysis, the extraction of diazepam and its metabolites from serum and urine, was also investigated and good recoveries were achieved. A low detection limit (0.2 ng) and high precision were obtained. The concentrations of diazepam and its metabolites in human serum, urine and saliva were determined after both single and multiple oral doses of diazepam (and oxazepam).  相似文献   

6.
A simple, rapid, and accurate column-switching liquid chromatography method was developed and validated for direct and simultaneous analysis of loxoprofen and its metabolites (trans- and cis-alcohol metabolites) in human serum. After direct serum injection into the system, deproteinization and trace enrichment occurred on a Shim-pack MAYI-ODS pretreatment column (10 mm x 4.6 mm i.d.) by an eluent consisting of 20 mM phosphate buffer (pH 6.9)/acetonitrile (95/5, v/v) and 0.1% formic acid. The drug trapped by the pretreatment column was introduced to the Shim-pack VP-ODS analytical column (150 mm x 4.6 mm i.d.) using acetonitrile/water (45/55, v/v) containing 0.1% formic acid when the 6-port valve status was switched. Ketoprofen was used as the internal standard. The analysis was monitored on a UV detector at 225 nm. The chromatograms showed good resolution, sensitivity, and no interference by human serum. Coefficients of variations (CV%) and recoveries for loxoprofen and its metabolites were below 15 and over 95%, respectively, in the concentration range of 0.1-20 microg/ml. With UV detection, the limit of quantitation was 0.1 microg/ml, and good linearity (r = 0.999) was observed for all the compounds with 50 microl serum samples. The mean absolute recoveries of loxoprofen, trans- and cis-alcohol for human serum were 89.6 +/- 3.9, 93.5 +/- 3.2, and 93.7 +/- 4.3%, respectively. Stability studies showed that loxoprofen and its metabolites in human serum were stable during storage and the assay procedure. This analytical method showed excellent sensitivity with small sample volume (50 microl), good precision, accuracy, and speed (total analytical time 18 min), without any loss in chromatographic efficiency. This method was successfully applied to the pharmacokinetic study of loxoprofen in human volunteers following a single oral administration of loxoprofen sodium (60 mg, anhydrate) tablet.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic assay was developed to simultaneously quantitate nefiracetam (NEF), a novel nootropic agent, and its three known oxidized metabolites (N-[(2,6-dimethylphenylcarbamoyl)methyl]succinamic acid (5-COOH-NEF), 4-hydroxy-NEF and 5-hydroxy-NEF) in human serum and urine. The quantitative procedure was based on solid-phase extraction with Sep-Pak C18 and ultraviolet detection at 210 nm. The calibration curves of NEF and the metabolites were linear over a wide range of concentrations (0.5–21.5 nmol/ml for NEF and 0.4–9.5 nmol/ml for metabolites in serum and 4–86 nmol/ml for NEF and 8–190 nmol/ml for metabolites in urine). Intra- and inter-day assay coefficients of variation for the compounds were less than 10%. The limit of detection was 0.1 nmol/ml for NEF, 5-COOH-NEF and 4-hydroxy-NEF, and 0.2 nmol/ml for 5-hydroxy-NEF in both serum and urine. This method is applicable for the determination of NEF and its metabolites in human serum and urine with satisfactory accuracy and precision.  相似文献   

8.
The use of perhexiline (PHX) is limited by hepatic and neurological toxicity associated with elevated concentrations in plasma that are the result of polymorphism of the cytochrome P450 2D6 isoform (CYP2D6). PHX is cleared by hepatic oxidation that produces three 4-monohydroxy metabolites: cis-OH-PHX, trans1-OH-PHX and trans2-OH-PHX. The current study describes an HPLC-fluorescent method utilising pre-column derivatization with dansyl chloride. Following derivatization, the metabolites were resolved on a C18 column with a gradient elution using a mobile phase composed of methanol and water. The method described is suitable for the quantification of the metabolites in human plasma and urine following clinical doses and for kinetic studies using human liver microsomes. The method demonstrates sufficient sensitivity, accuracy and precision between 5.0 and 0.01, 50.0 and 0.2 and 1.0 and 0.005 mg/l in human plasma, urine and liver microsomes, respectively, with intra-assay coefficients of variation and bias <15%, except at the lowest limit of quantification (<20%). The inter-assay coefficients of variation and bias were <15%. The application of this method to plasma and urine samples of five CYP2D6 extensive metaboliser (EM) patients at steady state with respect to PHX dosing determined that the mean (+/-S.D.) renal clearances of trans1-OH-PHX and cis-OH-PHX were 1.58+/-0.35 and 0.16+/-0.06l/h, respectively. The mean (+/-S.D.) dose recovered in urine as free and glucuronidated 4-monohydroxy PHX metabolites was 20.6+/-11.6%.  相似文献   

9.
The development of a radioimmunoassay for ranitidine in biological fluids   总被引:1,自引:0,他引:1  
The development of a radioimmunoassay for ranitidine in biological fluids is described. The sensitivity of the method is 2 ng/ml in human serum using a 0.1 ml sample. The cross reactivity of the antiserum with synthetic standards of ranitidine metabolites is <1%, 22% and 11% for ranitidine N-oxide, ranitidine sulphoxide and desmethyl ranitidine respectively. The latter two substances are minor metabolites in man, and do not affect the measurement of ranitidine in clinical samples. It was possible to produce a much higher titre antiserum by immunising the sheep instead of the rabbit.  相似文献   

10.
The fast analysis of ranitidine is of clinical importance in understanding its efficiency and a patient's treatment history. In this paper, a novel determination method for ranitidine based on capillary electrophoresis-electrochemiluminescence detection is described. The conditions affecting separation and detection were investigated in detail. End-column detection of ranitidine in 5 mM Ru(bpy)(3)(2+) solution at applied voltage of 1.20 V was performed. Favorable ECL intensity with higher column efficiency was achieved by electrokinetic injection for 10s at 10 kV. The R.S.D. values of ECL intensity and migration time were 6.38 and 1.84% for 10(-4) M and 6.01 and 0.60% for 10(-5) M, respectively. A detection limit of 7 x 10(-8) M (S/N=3) was achieved. The proposed method was applied satisfactorily to the determination of ranitidine in urine in 6 min.  相似文献   

11.
Ranitidine and its main metabolites, ranitidine N-oxide and ranitidine S-oxide, were determined in plasma and urine after separation using reversed-phase liquid chromatography. The mobile phase consisted of an initial isocratic step with 7:93 (v/v) acetonitrile–7.5 mM phosphate buffer (pH 6) for 8 min, followed by a linear gradient up to a 25:75 (v/v) mixture over 1 min. Detection was carried out by a post-column fluorimetric derivatization based on the reaction of the drugs with sodium hypochlorite, giving rise to primary amines that reacted with o-phthalaldehyde and 2-mercaptoethanol to form highly fluorescent products. The calibration graphs, based on peak area, were linear in the range 0.1–4 μg/ml for all drugs. The detection limits were 30, 41 and 32 ng/ml (8.6, 12.5 and 9.1 pmol) for ranitidine S-oxide, ranitidine N-oxide and ranitidine, respectively. Chromatographic profiles obtained for plasma and urine samples showed no interference from endogenous compounds.  相似文献   

12.
A HPLC assay using UV detection and post-column alkalinization was developed to quantify possible urinary excretion products of phenobarbital in human urine. After filtration the urine was injected directly onto the HPLC column for analysis of phenobarbital, p-hydroxyphenobarbital, phenobarbital N-glucosides and phenobarbital N-glucuronides. The accuracy and precision of the assay were within ± 15% and the limit of detection (LOD) was 1 μM, suitable for pharmacokinetic studies. Phenobarbital was administered orally to five male subjects and urine was collected for a period of 96–108 h. Phenobarbital, p-hydroxyphenobarbital, and phenobarbital N-glucosides were detected and quantified in the urine of all five subjects. The phenobarbital N-glucuronides were not detected in the urine. This assay provides a rapid method with improved selectivity to analyze urine for phenobarbital and its metabolites.  相似文献   

13.
A method to determine total and free mycophenolic acid (MPA) and its metabolites, the phenolic (MPAG) and acyl (AcMPAG) glucuronides, using HPLC and mass spectrometry was developed. Mean recoveries in plasma and urine samples were >85%, and the lower limits of quantification for MPA, MPAG and AcMPAG were 0.05, 0.05 and 0.01 mg/L, respectively. For plasma, the assay was linear over 0.05-50 mg/L for MPA and MPAG, and from 0.01 to 10mg/L for AcMPAG. A validation study demonstrated good inter- and intra-day precision (CV相似文献   

14.
A method for the simultaneous determination of de(N-methyl)-N-ethyl-8,9-anhydroerythromycin A 6,9-hemiacetal (EM523, I) and its three metabolites in human plasma and urine has been developed using high-performance liquid chromatography (HPLC) with chemiluminescence (CL) detection. Plasma and urine samples spiked with erythromycin as an internal standard were extracted with a mixture of dichloromethane and diethyl ether under alkaline conditions. The ortanic layer was evaporated under a stream of nitrogen gas. The reconstituted sample was injected into an HPLC apparatus and separated on an ODS column using a gradient elution method. The elute was reacted on-line with a mixture of tris(2,2′-bipyridine) ruthenium(II) and peroxodisulfate, and the generated CL intensity was detected. Optimization of the CL reaction conditions resulted in a sensitive and stable CL intensity for the determination of I and its metabolites. The recovery of each compound from human plasma and urine, and the sensitivity, linearity, accuracy and precision of the method were satisfactory. The lower limits of quantitation for each compound using 0.2 ml of plasma and 0.1 ml of urine were 1 and 00 ng/ml, respectively. This method has been used for the determination of I in samples from clinical trials.  相似文献   

15.
A method for the determination of sertraline in human plasma using gas chromatography-mass spectrometry (GC-MS), with the selected ion-monitoring (SIM) mode, was described. The following was used in this study: (1) single liquid-liquid extraction at alkaline pH after deproteinization of plasma protein and (2) perfluoroacylation with HFBA, which has higher sensitivity (about 10-fold) compared with previous reported derivatization. The detection limit for the SIM of sertraline as an N-HFB derivative was 0.1 ng/ml, and its recovery was 80-85%. The linear response was obtained in the range of 0.2-10.0 ng/ml with a correlation coefficient of 0.999. The coefficient of variation (C.V.%) was less than 12.1% in the 1-30 ng/ml, and less than 18.2% at 0.2 ng/ml, and the accuracy was less than 10% at all of the concentration range. These findings indicate that this assay method has adequate precision and accuracy to determine the amount of sertraline in human plasma. After pharmacokinetics was performed with this assay method following oral administration of sertraline hydrochloride in man, moment analysis revealed that pharmacokinetic parameters for sertraline (Cmax, 10.3 ng/ml; Tmax, 8.0 h; T(1/2) 28.6 h) were similar to previously reported results. These results indicate that this simple and sensitive assay method is readily applicable to the pharmacokinetic studies of sertraline.  相似文献   

16.
A sensitive and selective HPLC solid-phase extraction procedure was developed for the determination of platelet-activating factor antagonist BN-50727 and its metabolites in human urine. The procedure consisted in a double solid-phase extraction of the urine samples on cyanopropyl and silica cartridges, followed by an automated solid-phase extraction of the drug and metabolites on CBA cartridges and posterior elution on-line to the chromatographic system for its separation. The method allowed quantitation in the concentration range 10–2400 ng/ml urine for both BN-50727 and the main metabolite, the O-demethylated BN-50727 product. The limit of quantitation for both compounds was 10 ng/ml. The inter-assay precision of the method, expressed as relative standard deviation, ranged from 1.9 to 4.5% for BN-50727 and from 2.5 to 9.0% for the metabolite. The accuracy, expressed as relative error, ranged from −2.4 to 4.2% and from 0.2 to 6.2%, respectively. This paper describes the validation of the analytical methodology for the determination of BN-50727 in human urine and also for its metabolites. The method has been used to follow the time course of BN-50727 and its metabolites in human urine after single-dose administration.  相似文献   

17.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

18.
A sensitive and efficient method was developed for the determination of carvedilol and its metabolites in human urine by gas chromatography-mass spectrometry (GC-MS). Urine samples were hydrolyzed with beta-glucuronidase/arylsulfatase (from Helix pomatia) and the target compounds were extracted with liquid-liquid extraction. The extracts were completely derivatized with MSTFA and MBTFA and analyzed by GC-MS using an Ultra-2 column. The linearity of the assay ranges were 0.75-75 ngmL(-1) for carvedilol and o-desmethyl carvedilol (o-DMC), and 3.0-75 ngmL(-1) for 4-hydroxyphenyl carvedilol (4-HPC) and 5-hydroxyphenyl carvedilol (5-HPC). The absolute recovery of carvedilol and its metabolites added to a blank urine sample was 80.1-97.8%. The limits of detection (LOD) and quantitation (LOQ) of carvedilol and o-DMC were 0.30 and 0.75 ngmL(-1), and its of 4-HPC and 5-HPC were 0.75 and 3.0 ngmL(-1), respectively. The reproducibilities were 1.86-11.5% for the intra-day assay, and 0.70-1.71% for the inter-day assay precision and the degree of inaccuracy was -3.0 to 3.9% at the concentration of 75 ngmL(-1). The proposed GC-MS method was effective for the determination of carvedilol and its three metabolites in human urine.  相似文献   

19.
Karenitecin is a novel, highly lipophilic camptothecin derivative with potent anticancer potential. We have developed a sensitive high-performance liquid chromatographic method for the determination of karenitecin concentration in human plasma and urine. Karenitecin was isolated from human plasma and urine using solid-phase extraction. Separation was achieved by gradient elution, using a water and acetonitrile mobile phase, on an ODS analytical column. Karenitecin was detected using fluorescence detection at excitation and emission wavelengths of 370 and 490 nm, respectively. Retention time for karenitecin was 16.2±0.5 min and 8.0±0.2 min for camptothecin, the internal standard. The karenitecin peak was baseline resolved, with the nearest peak at 3.1 min distance. Using normal volunteer plasma and urine from multiple individuals, as well as samples from the 50 patients analyzed to date, no interfering peaks were detected. Inter- and intra-day coefficients of variance were <4.4 and 7.1% for plasma and <4.9 and 11.6% for urine. Assay precision, based on an extracted karenitecin standard plasma sample of 2.5 ng/ml, was +4.46% with a mean accuracy of 92.4%. For extracted karenitecin standard urine samples of 2.5 ng/ml assay precision was +2.35% with a mean accuracy of 99.5%. The mean recovery of karenitecin, at plasma concentrations of 1.0 and 50 ng/ml, was 81.9 and 87.8% respectively. In urine, at concentrations of 1.5 and 50 ng/ml, the mean recoveries were 90.3 and 78.4% respectively. The lower limit of detection (LLD) for karenitecin was 0.5 ng/ml in plasma and 1.0 ng/ml in urine. The lower limit of quantification (LLQ) for karenitecin was 1 ng/ml and 1.5 ng/ml for plasma and urine, respectively. Stability studies indicate that when frozen at −70°C, karenitecin is stable in human plasma for up to 3 months and in human urine for up to 1 month. This method is useful for the quantification of karenitecin in plasma and urine samples for clinical pharmacology studies in patients receiving this agent in clinical trials.  相似文献   

20.
A sensitive and specific method using liquid chromatography with electrospray ionization mass spectrometry (LC-ESI-MS) has been developed and validated for the identification and quantification of indapamide in human plasma. A simple liquid-liquid extraction procedure was followed by injection of the extracts on to a C18 column with gradient elution and detection using a single quadrupole mass spectrometer in selected ion monitoring (SIM) mode. The method was tested using six different plasma batches. Linearity was established for the concentration range 0.5-100.0 ng/ml, with a coefficient of determination (r) of 0.9998 and good back-calculated accuracy and precision. The intra- and inter-day precision (RSD%) was lower than 10%, and accuracy ranged from 85 to 115%. The lower limit of quantification was reproducible at 0.2 ng/ml with 0.2 ml plasma. The proposed method enables the unambiguous identification and quantification of indapamide for pre-clinical and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号