首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth-decoupled cells of Desulfovibrio vulgaris NCIMB 8303 can be used to reduce Pd(II) to cell-bound Pd(0) (Bio-Pd0), a bioinorganic catalyst capable of reducing hexavalent chromium to less toxic Cr(III), using formate as the electron donor. Magnetic resonance imaging showed that Bio-Pd0, immobilized in chitosan and agar beads, is distinguishable from the surrounding gel and is evenly dispersed within the immobilization matrix. Agar-immobilized Bio-Pd0 and `chemical Pd0' were packed into continuous-flow reactors, and challenged with a solution containing 100 m Cr(VI) (pH 7) at a flow rate of 2.4 ml h–1. Agar-immobilized chemical Pd0 columns lost Cr(VI) reducing ability by 160 h, whereas columns containing immobilized Bio-Pd0 maintained 90% reduction until 680 h, after which reduction efficiency was gradually lost.  相似文献   

2.
Chromate reduction by immobilized palladized sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
Resting cells of Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans NCIMB 8307 were used for the hydrogenase-mediated reduction of Pd(II) to Pd(0). The resulting hybrid palladium bionanocatalyst (Bio-Pd(0)) was used in the reduction of Cr(VI) to the less environmentally problematic Cr(III) species. The reduction of Cr(VI) by free and agar-immobilized Bio-Pd(0) was evaluated. Investigations using catalyst suspensions showed that Cr(VI) reduction was similar ( approximately 170 nmol Cr(VI)/h/mg Bio-Pd(0)) when Bio-Pd(0) was produced using D. vulgaris or D. desulfuricans. Continuous-flow studies using D. vulgaris Bio-Pd(0) with agar as the immobilization matrix investigated the effect of Bio-Pd(0) loading, inlet Cr(VI) concentration, and flow rate on the efficiency of Cr(VI) reduction. Reduction of Cr(VI) was highest at a D. vulgaris Bio-Pd(0) loading of 7.5 mg Bio-Pd(0)/mL agar (3:1 dry cell wt: Pd(0)), an input [Cr(VI)] of 100 microM, and a flow rate of 1.75 mL/h (approx. 3.5 column volumes/h). A mathematical interpretation predicted the activity of the immobilized Bio-Pd(0) for a given set of conditions within 5% of the value found by experiment. Considering the system as an 'artificial enzyme' analog and application of applied enzyme kinetics gave an apparent K(m) value (K(m app)) of 430 microM Cr(VI) and a determined value of flow-through reactor activity which differed by 11% from that predicted mathematically.  相似文献   

3.
Hexavalent chromium, a carcinogen and mutagen, can be reduced to Cr(III) by Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. This study examined Cr(VI) reduction by immobilized cells of the two strains in a common solution matrix using various entrapment matrices. Chitosan and PVA-borate beads did not retain integrity and supported low or no reduction of Cr(VI) by the cells. A commercial preparation (Lentikats) was stable but also did not support Cr(VI) reduction. K-carrageenan beads were stable in batch suspensions but gel integrity was lost after only 5 h in a flow-through system in the presence of 100 microM Cr(VI). The best immobilization matrices were agar and agarose, where the initial rates of reduction of Cr(VI) (from 500 microM solution) for D. vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776 were 127 (agar) and 130 (agarose), and 15 (agar) and 12 (agarose) nmol h(-1) mg dry cell wt(-1), respectively. The higher removal of Cr(VI) by D. vulgaris was also seen in 14-mL packed-bed flow-through columns, where, at a flow rate of 2.4 mL h(-1), the percentage removal of Cr(VI) was approximately 95% and 60% for D. vulgaris and Microbacterium sp., respectively (agar-immobilized cells). The Cr(VI) reducing activities of D. vulgaris and Microbacterium sp. were lost after 159 and 140 h, respectively. Examination of the beads for structural integrity within the columns in situ using magnetic resonance imaging after 24 and 100 h of continuous operation against Cr(VI) (with negligible Cr retained within the columns) showed that agar beads were more stable with time. The most appropriate system for development of a continuous bioprocess is thus the use of D. vulgaris NCIMB 8303 immobilized in an agar gel matrix.  相似文献   

4.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h?1), Cr(VI) concentration (2 to 8 mg L?1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h?1 did not affect the rate of Cr(VI) reduction, but above 6 mL h?1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h?1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h?1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L?1 at flow rates of 3 to 6 mL h?1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

5.
Aims: Most of the researches investigating immobilized fungi in chromate [Cr(VI)] bioremediation have used dead cells to adsorb Cr(VI). Therefore, the aim was to identify a Cr(VI)‐reducing fungus with the ability of reducing the toxic Cr(VI) into the much less toxic Cr(III) and to apply the immobilized living fungus in continual reduction of Cr(VI). Methods and Results: Cr(VI) reduction occurred using both free fungi and immobilized living Rhizopus sp. LG04. The Cr(VI) bioreduction by the free fungi was achieved mainly by bioreduction coupled with a small amount of biosorption on the cell surfaces. LG04 spores immobilized with 3% polyvinyl alcohol and 3% sodium alginate produced the most stable and efficient biobeads. When the LG04 biobeads were washed and transferred into fresh medium containing 42 mg l?1 of Cr(VI), the biobeads could be reused to reduce Cr(VI) for more than 30 cycles during an 82‐day operation period. Interestingly, as the cycles increased, the time required for complete reduction stabilized at approximately 2·5 days, which was faster than that obtained using the free fungi (4·5 days). The pH value of the solution decreased from 6·60 ± 0·10 to 3·85 ± 0·15 after each reduction cycle, which may be because the metabolic products of the fungus changed the environmental pH or because there was an accumulation of the organo‐Cr(III) complex. Conclusions: The results indicate that using the immobilized living fungus for the removal of Cr(VI) has the advantages in being stable, long‐term treatment, easy to re‐use and less biomass leakage. Significance and Impact of the Study: To our knowledge, this study reports the first successful use of immobilized living Rhizopus for the repeated reduction of Cr(VI).  相似文献   

6.
A novel catalytic activity of palladium [Pd(0)]-coated cells of Desulfovibrio desulfuricans ATCC 29577 ["bio-Pd(0)"] is demonstrated. Reduction of 700 microM Cr(VI) occurred within 24 h using formate (25 mM) or hydrogen (1 atm) as the electron donor, under conditions whereby cells lacking bound Pd(0), or palladium metal manufactured via chemical reduction of soluble Pd(II), did not reduce Cr(VI). The biomass-bound Pd(0) also functioned in the continuous removal of 400 microM Cr(VI) from a 1 mM solution under H(2) (flow residence time approximately 5 h), where chemically prepared Pd(0) was ineffective. This demonstrates a new type of active bioinorganic catalysis, whereby the presence of biomass bound to Pd(0) confers a novel catalytic capability not seen with Pd base metal or biomass alone.  相似文献   

7.
Bacillus sp. ES 29 (ATCC: BAA-696) is an efficient chromate reducing bacterium. We evaluated hexavalent chromium (Cr[VI]) reduction by immobilized intact cells and the cell-free enzyme extracts of Bacillus sp. ES 29 in a bioreactor system. Influences of different flow rates (3 to 14 mL h-1), Cr(VI) concentration (2 to 8 mg L-1), and immobilization support materials (Celite, amberlite, and Ca-alginate) on Cr(VI) reduction were examined. Both immobilized intact cells and the cell-free extract of Bacillus sp. ES 29 displayed substantial Cr(VI) reduction. Increasing flow rates from 3 to 6 mL h-1 did not affect the rate of Cr(VI) reduction, but above 6 mL h-1, the Cr(VI) reducing capacity of the immobilized intact cells and cell-free extract of Bacillus sp. ES 29 decreased. With both intact cells and the cell-free extracts, the rate of Cr(VI) reduction was inversely related to the concentration. Intact cells immobilized to Celite displayed the highest rate (k = 0.443 at 3 mL h-1) of Cr(VI) reduction. For the immobilized cell-free extract, maximal reduction (k = 0.689 at 3 mL h-1) was observed with Ca-alginate. Using initial Cr(VI) concentrations of 2 to 8 mg L-1 at flow rates of 3 to 6 mL h-1 both immobilized intact cells and the cell-free extracts reduced 84 to 98% of the influent Cr(VI). Results indicate that immobilized cells and the cell-free extracts of Bacillus sp. ES 29 could be used for large-scale removal of Cr(VI) from contaminated water and waste streams in containment systems.  相似文献   

8.
Simultaneous Cr(VI) reduction and phenol degradation were investigated in a reactor containing Pseudomonas aeruginosa CCTCC AB91095. Phenol was used as carbon source. P.aeruginosa utilized metabolites formed during phenol degradation as energy source for Cr(VI) reduction. Cr(VI) inhibited both Cr(VI) reduction and phenol degradation when Cr(VI) concentration exceeded the optimum value (20 mg/L), whereas phenol enhanced both Cr(VI) reduction and phenol degradation below the optimum initial concentration of 100 mg/L. Cr(III) was the predominant product of Cr(VI) reduction in cultures after incubation for 24 h. Both Cr(VI) reduction and phenol degradation were influenced by the amount of inocula. The concentration of Cr(VI) and phenol declined quickly from 20, 100 to 3.36, 29.51 mg/L in cultures containing of 5% (v/v) inoculum after incubation for 12 h, respectively. The whole study showed that P. aeruginosa is promising for the reduction of toxic Cr(VI) and degradation of organic pollutants simultaneously in the mineral liquid medium.  相似文献   

9.
Chromate-reducing microorganisms with the ability of reducing toxic chromate [Cr(VI)] into insoluble trivalent chromium [Cr(III)] are very useful in treatment of Cr(VI)-contaminated water. In this study, a novel chromate-reducing bacterium was isolated from Mn/Cr-contaminated soil. Based on morphological, physiological/biochemical characteristics and 16S rRNA gene sequence analyses, this strain was identified as Intrasporangium sp. strain Q5-1. This bacterium has high Cr(VI) resistance with a MIC of 17 mmol l−1 and is able to reduce Cr(VI) aerobically. The best condition of Cr(VI) reduction for Q5-1 is pH 8.0 at 37°C. Strain Q5-1 is also able to reduce Cr(VI) in resting (non-growth) conditions using a variety of carbon sources as well as in the absence of a carbon source. Acetate (1 mmol l−1) is the most efficient carbon source for stimulating Cr(VI) reduction. In order to apply strain Q5-1 to remove Cr(VI) from wastewater, the bacterial cells were immobilized with different matrices. Q5-1 cells embedded with compounding beads containing 4% PVA, 3% sodium alginate, 1.5% active carbon and 3% diatomite showed a similar Cr(VI) reduction rates to that of free cells. In addition, the immobilized Q5-1 cells have the advantages over free cells in being more stable, easier to re-use and minimal clogging in continuous systems. This study provides potential applications of a novel immobilized chromate-reducing bacterium for Cr(VI) bioremediation.  相似文献   

10.
The chromate-reducing ability of Pseudomonas aeruginosa A2Chr was compared in batch culture, with cells entrapped in a dialysis sac, and with cells immobilized in an agarose-alginate film in conjunction with a rotating biological contactor. In all three systems, the maximum Cr(VI) reduction occurred at 10 mg Cr(VI)/l. Whereas at 50 mg Cr(VI)/l concentration, only 16% of the total Cr(VI) was reduced, five spikings with 10 mg chromate/l at 2-h intervals led to 96% reduction of the total input of 50 mg Cr(VI)/l. Thus maximum Cr(VI) reduction was achieved by avoiding Cr(VI) toxicity to the cells by respiking with lower Cr(VI) concentrations. At 10 mg Cr(VI)/l, the pattern of chromate reduction in dialysis-entrapped cells was almost similar to that of batch culture and 86% of the bacterially reduced chromium was retained inside the dialysis sac. In electroplating effluent containing 100 mg Cr(VI)/l, however, the amount of Cr(VI) reduced by the cells immobilized in agarose-alginate biofilm was twice and thrice the amount reduced by batch culture and cells entrapped in a dialysis sac, respectively.  相似文献   

11.
Bacterial reduction of hexavalent chromium   总被引:6,自引:0,他引:6  
Summary Cr(VI)-reducing bacteria are widespread and Cr(VI) reduction occurs under both aerobic and anaerobic conditions. Under aerobic conditions, both NADH and endogenous cell reserves may serve as the electron donor for Cr(VI) reduction. Under anaerobic conditions, electron transport systems containing cytochromes appear to be involved in Cr(VI) reduction. High cell densities are necessary to obtain a significant rate of Cr(VI) reduction. Cr(VI) reduction by bacteria may be inhibited by Cr(VI), oxygen, heavy metals, and phenolic compounds. The optimum pH and temperature observed for Cr(VI) reduction generally coincide with the optimal growth conditions of cells. The optimum redox potential for Cr(VI) reduction has not yet been established.  相似文献   

12.
Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr(VI)-contaminated groundwater through formation of permeable reactive biobarriers (PRBB).  相似文献   

13.
In this report, possible utilization of a chromium-reducing bacterial strain Cellulosimicrobium cellulans KUCr3 for effective bioremediation of hexavalent chromium (Cr(VI))-containing wastewater fed with tannery effluents has been discussed. Cr(VI) reduction and bioremediation were found to be related to the growth supportive conditions in wastewater, which is indicative of cell mass dependency for Cr(VI) reduction. Cr(VI) reduction was determined by measuring the residual Cr(VI) in the cell-free supernatant using colorimetric reagent S-diphenylcarbazide. Nutrient availability and initial cell density showed a positive relation with Cr(VI) reduction, but it was inhibited with increasing concentration of Cr(VI) under laboratory condition. The optimum temperature and pH for effective Cr(VI) reduction in wastewater were found to be 35°C and 7.5, respectively. The viable cells of KUCr3 were successfully entrapped in an agarose bead that was used in continuous column and batch culture for assaying Cr(VI) reduction. In packed bed column (continuous flow) experiment, approximately 25% Cr(VI) reduction occurred after 144 h. Cr(VI) was almost 75% and 52% reduced at concentrations of 0.5 mM and 2 mM Cr(VI), respectively, after 96 h in batch culture experiment in peptone-yeast extract-glucose medium, whereas it could decrease the Cr(VI) content up to 40% from the water containing tannery waste. This study suggests that KUCr3 could be used as a candidate for possible environmental clean up operation with respect to Cr(VI) bioremediation.  相似文献   

14.
Bioremediation is the most promising and cost effective technology widely used nowadays to clean up both soils and wastewaters containing organic or inorganic contaminants. Discharge of chromium containing wastes has led to destruction of many agricultural lands and water bodies. Utilisation of chromium(Cr) reducing microbes and their products has enhanced the efficiency of the process of detoxification of Cr(VI) to Cr(III). This review focuses mainly on the current technologies prevalent for remediation like natural attenuation, anaerobic packed bed bioreactors (using live cells, Cr(VI) reductases or their byproducts) and use of engineered microorganisms. Treatment of wastewaters by biosorption or using biofilms and immobilized microbial cells are also discussed.  相似文献   

15.
Pang Y  Zeng GM  Tang L  Zhang Y  Liu YY  Lei XX  Wu MS  Li Z  Liu C 《Bioresource technology》2011,102(22):10733-10736
Pseudomonas aeruginosa (P. aeruginosa) was immobilized with polyvinyl alcohol (PVA), sodium alginate and multiwalled carbon nanotubes (MCNTs). After immobilization, the beads were subjected to freeze-thawing to enhance mechanical strength. When exposed to 80 mg/L Cr(VI), the immobilized bacteria were able to reduce 50% of them in 84 h, however the free cells were deactivated at this concentration. The beads were used to reduce 50 mg/L Cr(VI) for nine times, with the reduction efficiency above 90% in the first five times and 65% in the end.  相似文献   

16.
Arthrobacter sp. SUK 1201, a potent isolate reported from chromite mine overburden of Orissa, India, has been evaluated for Cr(VI) reduction with immobilized whole cells. For whole-cell immobilization, Ba-alginate was found to be most effective, and the Cr(VI) reduction potential was maximum in minimal salts (MS) medium with cells immobilized in 2% alginate. Fourier transform infrared spectra of depolymerized cells has failed to detect any sign of complexation of Cr(VI) or its reduced products with the cell mass. Reduction efficiency of the beads increased with increase in cell load, but decreased with increase in Cr(VI) concentration in the medium. Glycerol was the most potent electron donor for chromate reduction, followed by glucose and peptone. Optimum pH for Cr(VI) reduction was 7.0, and the process was inhibited by metal ions such as Ni(II), Co(II), Cd(II), Zn(II), and Mn(II) but not by Cu(II) and Fe(III). Similarly, CCCP (carbonyl cyanide-m-chlorophenylhydrazone), DCC (N,N,-dicyclohexylcarbodiimide), sodium azide, and sodium fluoride were inhibitory in nature, whereas chromate reduction was unaffected in the presence of DNP (2,4-dinitrophenol). Moreover, immobilized cells of SUK 1201 remained biologically active for four consecutive cycles, accompanied with an initial increase in cell number in the beads, although a decline in chromate reduction was recorded from the second cycle onward. Immobilized cells of Arthrobacter sp. SUK 1201, therefore, could be a potential tool for long-term uses in chromium detoxification.  相似文献   

17.
[背景]高盐含铬废水的去除过程中,Cr(Ⅵ)还原菌是研究者关注的重点,但目前对耐盐菌株的Cr(Ⅵ)脱毒特性及机理的分析仍较少。[目的]比较两株耐盐菌株的Cr(Ⅵ)移除特性,并区分Cr(Ⅵ)耐受机制的差异;通过基因组测序分析,从基因层面推测铬耐受相关基因;构建铬还原菌的混菌体系,考察两者对去除污染物的协同作用。[方法]从青海茶卡盐湖分离耐盐菌Staphylococcus sp.YZ-1,与Bacillus cereus CC-1进行基础特性和Cr(Ⅵ)去除性能的比较,并通过全基因组序列的分析验证特性测试的结果。[结果]两株菌都具有铬移除特性,但CC-1的铬移除效率更高,在初始Cr(Ⅵ)浓度为0.1 mmol/L情况下,CC-1能在12h内移除95.3%的Cr(Ⅵ),而YZ-1只能移除40.1%。在进一步实验中发现YZ-1只能对Cr(Ⅵ)进行还原,将其转化为可溶的有机态Cr(Ⅲ),而CC-1能同时对Cr(Ⅵ)进行还原和吸附。全基因组分析发现YZ-1具有编码外排泵蛋白的基因和编码NAD(P)H氧化还原酶的基因,而CC-1具有编码铬转运蛋白ChrA和细胞色素C氧化还原酶的基因。两株菌的混菌体系在处理含Cr(Ⅵ)、Te(Ⅳ)的废水时,菌群能将还原产物聚集成团并沉淀到底部。[结论]菌株YZ-1和CC-1均为耐盐铬还原菌,但YZ-1中的铬还原酶为诱导型酶,CC-1则为组成型酶。基因组数据分析鉴别出两者可能同时存在多种铬耐受机制相关编码基因。混合菌群可以结合YZ-1的自絮凝特性和两者均有的Te(Ⅳ)/Cr(Ⅵ)还原活性,具有潜在的实用价值。  相似文献   

18.
Li H  Liu T  Li Z  Deng L 《Bioresource technology》2008,99(7):2234-2241
The main goal of this study was to exploit low-cost and efficient sorbents for the removal and recovery of Cr(VI) in wastewater. Three supports of sawdust, polyurethane and alginate were applied to immobilize living and dead R. cohnii cells, respectively. There was a distinct increase in the Cr(VI) removal efficiency before and after the HCl-pretreatment. Langmuir adsorption isotherm model was well used to describe the distribution of Cr(VI) between the liquid and solid phases in batch studies. The values of q0 predicted by Thomas model were near to experimental ones in the experiments of packed column. The breakthrough curves calculated with this model were consistent well with experimental ones at a largely extent. Desorption, regeneration and reuse of the packed column were studied. After 5 cycles, adsorption capacity was still kept at higher level, reaching to 91.4, 87.9, 91.4 and 93.3mg/l contrasted with the first cycle (94.1, 90.4, 94.8 and 98.5mg/l) and the desorption efficiency were 85.0%, 96.2%, 93.4% and 91.4% compared with the first cycle (87.6%, 95.4%, 96.7% and 94.3%), corresponding to living cells immobilized with sawdust, polyurethane, and dead cells immobilized with polyurethane and alginate, respectively. The results indicated that the packed columns with the immobilized living and dead R. cohnii cells were the better option to adsorb, desorb and recover Cr(VI) from wastewater.  相似文献   

19.
Chromium (VI) is an environmental and occupational carcinogen, and it is accepted that intracellular reduction is necessary for DNA damage and cytotoxicity. We have investigated the interaction of Cr(VI) with hepatocytes in vitro to determine the contribution of various hepatic enzymes to the reduction of Cr(VI). Cr(VI) caused a dose-dependent decrease in cell viability and intracellular reduced glutathione (GSH) levels between 100 and 500 microM within 3 h exposure of hepatocytes. Both DT-diaphorase and cytochrome P450 play only a minor role in detoxifying Cr(VI) and/or its metabolites. (GSH) appears to act as a non-enzymatic reductant, reducing Cr(VI) to a toxic form. The evidence for this is two-fold. Firstly, GSH was depleted during the metabolism of Cr(VI) and, secondly, pretreatment of the cells with diethylmaleate to deplete GSH levels, partially protected the cells from Cr(VI) toxicity. Glutathione reductase appears to play an important role in the enzymatic reduction of Cr(VI) as inhibition of this enzyme by carmustine (BCNU) markedly protected the cells from cytotoxicity.  相似文献   

20.
Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis   总被引:13,自引:0,他引:13  
Apoptosis is a programmed cell death mechanism to control cell number in tissues and to eliminate individual cells that may lead to disease states. The present study investigates chromium(VI) (Cr(VI))-induced apoptosis and the role of reactive oxygen species (ROS) and p53 in this response. Treatment of human lung epithelial cells (A549) with Cr(VI) caused apoptosis as measured by DNA fragmentation, mitochondria damage, and cell morphology. Cr(VI)-induced apoptosis is contributed to ROS generation, resulting from cellular reduction of Cr(VI) as measured by flow cytometric analysis of the stained cells, oxygen consumption, and electron spin resonance spin trapping. Scavengers of ROS, such as catalase, aspirin, and N-acetyl-L-cysteine, decreased Cr(VI)-induced apoptosis, whereas NADPH and glutathione reductase, enhancers of Cr(VI)-induced ROS generation, increased it. p53 is activated by Cr(VI), mostly by ROS-mediated free radical reactions. Cr(VI)-induced ROS generation occurred within a few minutes after Cr(VI) treatment of the cells, whereas p53 induction took at least 5 h. The level of Cr(VI)-induced apoptosis was similar in both p53-positive cells and p53-negative cells independent of p53 status in the early stage (0-3 h) of Cr(VI) treatment. However, at the later stage (3-24 h), the level of the apoptosis is higher in p53-positive cells than in p53-negative cells. These results suggest that ROS generated through Cr(VI) reduction is responsible to the early stage of apoptosis, whereas p53 contributes to the late stage of apoptosis and is responsible for the enhancement of Cr(VI)-induced apoptosis at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号