首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, the response surface methodology was used to optimize the cryoprotective agent (skimmed milk powder, lactose and sucrose) formulation for enhancing the viability of Lactobacillus curvatus N19 during freeze-drying and storage stability of cells freeze-dried by using optimum formulation was evaluated. Our results showed that the most significant cryoprotective agent influencing the viability of L. curvatus N19 to freezing and freeze-drying was sucrose and skim milk, respectively. The optimal formulation of cryoprotective agents was 20 g/100 mL skim milk, 3.57 g/100 mL lactose and 10 g/100 mL sucrose. Using the optimum formulation during freeze-drying, the cell survival was found more than 98%. Under the optimal conditions, although only storage of the cells at 4 °C for 6 month retained the maximum stability (8.85 log cfu/g), the employed protectant matrix showed promising results at 25 °C (7.89 log cfu/g). The storage stability of cells under optimized conditions was predicted by accelerated storage test, which was demonstrated that the inactivation rate constant of the freeze-dried L. curvatus N19 powder was 9.74 × 10−6 1/d for 4 °C and 2.08 × 10−3 1/d for 25 °C. The loss of specific acidification activity after the storage at 4 and 25 °C was determined.  相似文献   

2.
Long-term persistence of entomopathogenic fungi as biopesticides is a major requirement for successful industrialization. Corn oil carrier was superior in maintaining germination rates of Isaria fumosorosea SFP-198 conidia during exposure to 50°C for 2 h, when compared with other oils, such as soybean oil, cottonseed oil, paraffin oil, and methyl oleate. The corn oil-based conidial suspension (91.6% germination) was also better in this regard than conidial powder (28.4% germination) after 50°C for 8 h. Long-term storage stabilities of corn oil-based conidial suspension and conidial powder at 4 and 25°C for 24 months were investigated, based on the correlation of germination rate with insecticidal activity against greenhouse whiteflies, Trialeurodes vaporariorum. Viability of conidia in corn oil was more than 98.4% for up to 9 months of storage at 25°C, and followed by 23% at 21 months. However, conidial powder had only 34% viability after 3 months of storage at 25°C, after which its viability rapidly decreased. The two conidial preparations stored at 4°C had better viabilities than those at 25°C, showing the same pattern as above. These results indicate that corn oil-based conidial suspension can be used to improve conidial persistence in long-term storage and be further applied to the formulation of other thermo-susceptible biological control agents.  相似文献   

3.
The formulation of mycopesticides may require a physical separation of conidia from the substrate and subsequent drying. In the present study, Beauveria bassiana conidia produced by solid-state fermentation were harvested either through a dry or washing protocol. Washed conidia were used to design a water-dispersible granule (WG) formulation, whereas sieved conidia were mixed with an emulsifiable oil to achieve an oil-based formulation (OD). Potential harmful effects caused by the formulation type on the storage stability and insecticidal activity against Hypothenemus hampei were assessed. As expected, the time for initial conidial germination to drop 50% (GT50) in all treatments was deeply influenced by storage temperatures, which varied from over 180 days at 4 °C to less than 90 days at 35°C. In all four tested temperatures, GT50s for unformulated dry conidia were significantly higher than for those formulated as WG, and the latter was similar to conidia formulated as OD in the two highest temperatures. Residual water content in the OD formulation (1,600 vs. 340?ppm) had a negative influence on conidial survival under storage, whereas WG granules immediately dried after the washing protocol showed conidial germination similar to granules exposed to a slower dehydration regime. Mortality of H. hampei adults exposed to different concentrations of B. bassiana formulated as WG was slightly lower (10–15%) than either the OD or the unformulated conidia. In brief, we have demonstrated that formulation type and their moisture level can affect the storage stability and insecticidal activity of B. bassiana conidia toward the coffee berry borer. Of particular importance, we have shown that drying oils prior to formulation could improve the storage of mycopesticides, an approach that may find industrial applications.  相似文献   

4.
Bacillus thuringiensis (Bt) is the most widely used insecticidal microbe due to its specific toxicity and safe use with respect to animals and the environment. In this study, we isolated Bt strain Q52-7 from a soil sample collected in the Qian Shan District, Liao Ning Province, China. We observed that the Q52-7 strain produced spherical crystals. The Bt Q52-7 strain had high toxicity against Asian Cockchafer (Holotrichia parallela), exhibiting an LC50 of 3.80 × 109 cfu/g, but is not toxic for Anomala corpulenta Motschulsky and Holotrichia oblita. Using general cry8 primers, we amplified a 1.3 kb fragment with the polymerase chain reaction. Specific primers were designed for the amplified fragment to clone the full-length coding region. A novel gene, cry8Na1, had 69 % sequence similarity with cry8Ca1. cry8Na1 gene was successfully expressed in the HD-73 acrystalliferous mutant of Bt subsp. Kurstaki HD-73. Bioassays demonstrated that the Cry8Na1 protein is highly toxic for the H. parallela, with a 50 % lethal concentration of 8.18 × 1010 colony forming units per gram.  相似文献   

5.
The fungus, Esteya vermicola has been proposed as biocontrol agent against pine wilting disease caused by Bursaphelenchus xylophilus. In this study, we reported the effects of temperature and different additives on the viability and biocontrol efficacy of E. vermicola formulated by alginate-clay. The viability of the E. vermicola formulation was determined for six consecutive months at temperature ranged from ?70 to 25 °C. The fresh conidia without any treatment were used as control. Under the optimal storage conditions with E. vermicola alginate-clay formulation, the results suggested that E. vermicola alginate-clay formulation with a long shelf life could be a non-vacuum-packed formulation that contains 2 % sodium alginate and 5 % clay at 4 °C. Three conidial formulations prepared with additives of 15 % glycerol, 0.5 % yeast extract and 0.5 % herbal extraction, respectively significantly improved the shelf life. In addition, these tested formulations retained the same biocontrol efficacy as the fresh conidial against pinewood nematode. This study provided a tractable and low-cost method to preserve the shelf life of E. vermicola.  相似文献   

6.
Bacillus thuringiensis (Bt) is one of the bioinsecticides used worldwide due to its specific toxicity against target pests in their larval stage. Despite this advantage, its use is limited because of their short persistence in field when exposed to ultra violet light and changing environmental conditions. In this work, microencapsulation has been evaluated as a promising method to improve Bt activity. The objective of this study was to develop and characterize native and modified amaranth starch granules and evaluate their potential application as wall materials in the microcapsulation of B thuringiensis serovar kurstaki HD-1 (Bt- HD1), produced by spray drying. Native amaranth starch granules were treated by hydrolyzation, high energy milling (HEM) and were chemically modified by phosphorylation and succinylation. The size of the Bt microcapsules varied from 12.99 to 17.14 μm adequate to protect the spores of Bt from ultraviolet radiation. The aw coefficient of the microcapsules produced by the modified starches after drying was low (0.14–1.88), which prevent microbial growth. Microcapsules prepared with phosphorylated amaranth starch presented the highest bacterial count and active material yield. Different concentrations of the encapsulated Bt formulation in phosphorylated amaranth starch showed a high level of insecticidal activity when tested on M. sexta larvae and has great potential to be developed as a bioinsecticide formulation, also, the level of toxicity is much higher than that found in some of the products commercially available.  相似文献   

7.
The present study scrutinised how far temperature would affect the velocity of the insecticidal activity of Bacillus thuringiensis, as the rapidity of pest control achievements is of a great concern. Third instar Spodoptera littoralis larvae were treated with Bt at three concentration levels under five different temperatures (15°C, 20°C, 25°C, 30°C and 35°C). LT50s were evaluated in each case. The LT50 values showed various levels of reductions as temperature and/or Bt concentration increased, indicating that the velocity of mortality (1/LT50) and/or the rapidity of Bt activity was almost temperature dependant. However, relatively high and low reduction percentages in the LT50 values on the elevation of 5°C were obtained at lower and higher temperature ranges, respectively. The temperature coefficient, Q 10 values, determined within narrow ranges (5°C) showed great reductions when temperature increased from 15°C to 20°C at all Bt concentrations. Raising temperature by 5°C above 20°C or 25°C almost caused similar Q 10 values indicating constant increase in the response of Bt activity within 20–30°C temperature range. Q 10 values over 30°C were comparatively very low. This proved that decrease in Q 10 values due to the rise of temperature was dependant on the starting temperature.  相似文献   

8.
We investigated the use of maize pollen as food by adult Chrysoperla carnea under laboratory and field conditions. Exposure of the insects to insecticidal Cry proteins from Bacillus thuringiensis (Bt) contained in pollen of transgenic maize was also assessed. Female C. carnea were most abundant in a maize field when the majority of plants were flowering and fresh pollen was abundant. Field-collected females contained an average of approximately 5000 maize pollen grains in their gut at the peak of pollen shedding. Comparable numbers were found in females fed ad libitum maize pollen in the laboratory. Maize pollen is readily used by C. carnea adults. When provided with a carbohydrate source, it allowed the insects to reach their full reproductive potential. Maize pollen was digested mainly in the insect's mid- and hindgut. When Bt maize pollen passed though the gut of C. carnea, 61% of Cry1Ab (event Bt176) and 79% of Cry3Bb1 (event MON 88017) was digested. The results demonstrate that maize pollen is a suitable food source for C. carnea. Even though the pollen grains are not fully digested, the insects are exposed to transgenic insecticidal proteins that are contained in the pollen.  相似文献   

9.
Effects of cold storage temperatures and storage duration were evaluated for Psyttalia humilis (Silvestri) from Namibia and Psyttalia ponerophaga (Silvestri) from Pakistan, braconid parasitoids of Bactrocera oleae (Rossi) imported to California, USA. Immature stages of P. humilis were exposed to 4, 6, 8, 10, or 12 °C for 1, 2 or 4 months (pupa only at 4 and 12 °C) and then held at 24 °C for adult emergence. Less than 5 % of parasitoids in the 4–8 °C treatments survived, regardless of storage duration. At the 10 °C treatment, adult survival decreased with increased storage duration, but increased with advancing developmental stages. Survival was not affected at the 12 °C treatment. Adult P. humilis were exposed to 6, 8, 10 °C for short periods (1, 2, 4, or 6 weeks) or ambient winter conditions in Parlier, California, USA (about 9 °C). Regardless of storage temperature, P. humilis reproduction was reduced after storage of four and six weeks. Similarly, after 4 months at ambient winter temperatures, P. humilis reproduction was reduced. Psyttalia ponerophaga pupae stored at 6 °C for 41–97 days had decreased survival and increased developmental time. Survival of P. ponerophaga pupae ranged from 13.9–52.1 %, whereas under similar storage conditions survival of P. humilis was <0.7 %, suggesting P. ponerophaga is more cold tolerant than P. humilis.  相似文献   

10.
A single peak (λmax 370) yellow pigment-producing mutant derived from Monascus sp. TISTR 3179 was used for the pigment production in solid rice culture. Various factors affecting yellow tones were investigated. Hom-mali rice variety was the best amongst five Thai local varieties used for fungus culture. It was also better than corn, mungbean, soybean, potato, sweet potato, or cassava tubers. The moisture content and temperature were the key environmental factors affecting the color tones of creamy, tangerine, and golden brown rice solid cultures. The golden brown rice culture gave the highest yellow pigment concentration. Under an optimum room temperature of 28–32 °C, an initial moisture content of 42 %, and 7-day-old inoculum size of 2 % (v/w) the maximum yield at 2,224.63 A370U/gdw of yellow pigment was produced. A mellow yellow powder at 550 A370U/gdw could be obtained using spray-drying techniques. The powder had a moisture content of 5.15 %, a water activity value of 0.398, a hue angle of 73.70 ° (yellowish orange), high lightness (L*) of 74.63, color saturation (C*) of 28.97, a neutral pH of 7.42, 0.12 % acidity and solubility of 0.211 g/10 ml. It was noteworthy that the Chinese fresh noodle with spray-dried yellow powder showed no discoloration during 8-day storage.  相似文献   

11.
Commercial grade insecticides are supplemented with the chemical additives to enhance the insecticidal activity before the action of main insecticide commence. Benzyl benzoate is one of such additive used in the formulation of many insecticides. Due to deposition of such additive the soil and plant health get deteriorated. The present research work describes the biodegradation of benzyl benzoate by Pseudomonas desmolyticum NCIM 2112. The biodegradation was influenced by factors such as pH, temperature and other carbon and nitrogen sources. The optimum pH and temperature for biodegradation was found to be 7.0 and 30 °C respectively. It was more effective at 0.5 % glucose and lactose concentration and at 0.05 % NaNO3 and peptone concentration. Pseudomonas desmolyticum NCIM 2112 degrades benzyl benzoate into compounds like benzaldehyde and benzoic acid which are nontoxic in nature. Phytotoxicity study shows no germination inhibition in presence of degraded metabolites.  相似文献   

12.
The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics–calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p?>?0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.  相似文献   

13.
Amaranthus retroflexus seeds were dormant at 25 °C in the darkness and in the light, and also at 35 °C in the darkness. GA3 and ethylene partially removed dormancy at 35 °C in the darkness and at 25 °C in the light. Dormancy was removed by 1–5 days of treatment with nitric oxide or cyanide. The effect of NO and HCN was inhibited by cPTIO, thus the effect of HCN was NO dependent. Dry storage for 16 weeks could partially release dormancy only at 35 °C, but not at 25 °C. Dry storage increased the response to light, GA3 and ethylene. The response to GA3 and ethylene at 25 °C was enhanced with increasing storage temperature. GA3, ethylene and nitric oxide could substitute dry storage and stratification in partially dormant seeds.  相似文献   

14.
《Journal of Asia》2019,22(2):537-542
Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) ERL836 has been commercialized under the name ChongchaeSak to control an agricultural insect pest, the western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), in the Republic of Korea. As soon as it was launched in 2017, it became a popular product and has received a positive response. However, study of the storage stability of the fungus ERL836 has yet to be investigated. To determine the optimum conditions for long-term storage, we assessed conidial viability and insecticidal activity of B. bassiana ERL836 according to storage temperature and culture substrate. Viability of B. bassiana ERL836 conidia from mycotized grains (millet and rice) stored at low (4 °C) and moderate (25 and 30 °C) temperatures was maintained at >85% for 24 and 18 months, respectively, along with insecticidal activity. In contrast, the samples stored at 37 °C showed low germination rate (about 80% germination rate for only 5 months). This result suggests that low and moderate temperatures (4 to 30 °C) conserve B. bassiana ERL836 viability and virulence.  相似文献   

15.
We report here the effect of adding different types of carbohydrate-binding modules (CBM) to a single-module GH7 family cellobiohydrolase Cel7A from a thermophilic fungus Talaromyces emersonii (TeCel7A). Both bacterial and fungal CBMs derived from families 1, 2 and 3, all reported to bind to crystalline cellulose, were used. Chimeric cellobiohydrolases with an additional S–S bridge in the catalytic module of TeCel7A were also made. All the fusion proteins were secreted in active form and in good yields by Saccharomyces cerevisiae. The purified chimeric enzymes bound to cellulose clearly better than the catalytic module alone and demonstrated high thermal stability, having unfolding temperatures (T m) ranging from 72 °C to 77 °C. The highest activity enhancement on microcrystalline cellulose could be gained by a fusion with a bacterial CBM3 derived from Clostridium thermocellum cellulosomal-scaffolding protein CipA. The two CBM3 fusion enzymes tested were more active than the reference enzyme Trichoderma reesei Cel7A both at moderate (45 °C and 55 °C) and at high temperatures (60 °C and 65 °C), the hydrolysis yields being two- to three-fold better at 60 °C, and six- to seven-fold better at 65 °C. The best enzyme variant was also tested on a lignocellulosic feedstock hydrolysis, which demonstrated its potency in biomass hydrolysis even at 70 °C.  相似文献   

16.
The elevated temperatures of 50 ° C, 60 ° C, and 70 ° C were used in an accelerated storage test for predicting the stability of freeze-dried suspensions of L. acidophilus. The logarithmic death of bacteria at the above temperatures and the Arrhenius relationship obtained permitted predicting the rate of death at any storage temperature. The values predicted for storage stability of freeze-dried suspensions of L. acidophilus at 4 ° C and 20 ° C were confirmed by the actual values obtained after storage at these temperatures for 6, 15, and 19 mo.  相似文献   

17.
The Western Ghats of Karnataka natural ecosystem are among the most diverse and is one of the eight hottest hotspots of biological diversity in the world, that runs along the western part of India through four states including Karnataka. Bacillus thuringiensis (Bt) strains were isolated from soils of Western Ghats of Karnataka and characterized by molecular and analytical methods as a result of which 28 new Bt-like isolates were identified. Bt strains were isolated from soil samples using sodium acetate selection method. The morphology of crystals was studied using light and phase contrast microscopy. Isolates were further characterized for insecticidal cry gene by PCR, composition of toxins in bacterial crystals by SDS-PAGE cloning, sequencing and evaluation of toxicity was done. As a result 28 new Bt-like isolates were identified. Majority of the isolates showed the presence of a 55 kDa protein bands on SDS-PAGE while the rest showed 130, 73, 34, and 25 kDa bands. PCR analysis revealed predominance of Coleopteran-active cry genes in these isolates. The variations in the nucleotide sequences, crystal morphology, and mass of crystal protein(s) purified from the Bt isolates revealed genetic and molecular diversity. Three strains containing Coleopteran-active cry genes showed higher activity against larvae Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) than B. thuringiensis subsp. Morrisoni. Results indicated that Bt isolates could be utilized for bioinsecticide production, aiming to reduce the use of chemical insecticide which could be useful to use in integrated pest management to control agriculturally important pests for sustainable crop production.  相似文献   

18.
Banana fruit are highly sensitive to chilling injury (CI), while the effect of different degrees of CI on the subsequent fruit ripening is largely unknown. In the present work, ripening characteristic of banana fruit after storage at 7 °C for 3 days or for 8 days, and expression levels of eight genes associated with ethylene biosynthetic and signaling, including MaACS1, MaACO1, MaERS1, MaERS3, and MaEIL14, were investigated. The results showed that banana fruit stored at 7 °C for 8 days exhibited more severe chilling symptoms than those at 7 °C for 3 days. Compared with banana fruit stored at 7 °C for 8 days, which showed abnormal ripening, more decrease in fruit firmness, while higher increase in ethylene production and hue angle were observed in banana fruit stored at 7 °C for 3 days, which could ripening normally. Moreover, gene expression profiles during ripening revealed that ethylene biosynthetic and signaling genes were differentially expressed in peel and pulp of banana fruit after storage at 7 °C for 3 days and 7 °C for 8 days. In the peel of fruit storage at 7 °C for 3 days, expression levels of MaACS1, MaACO1, MaEIL1, and MaEIL2 increased remarkably while MaERS3, MaEIL1, and MaEIL4 were enhanced in the fruit after storage at 7 °C for 8 days. In the pulp, with the exception of MaACO1 and MaERS3, expression levels of other genes did not exhibit a significant difference, between the banana fruit storage at 7 °C for 3 days and 7 °C for 8 days. Taken together, our results suggest that differential expression of ethylene biosynthetic and signaling genes such as MaERS3, MaACO1, and MaEIL2, may be related to ripening behavior of banana fruit with different degrees of CI after cold storage.  相似文献   

19.
We conducted three bioassays to evaluate the effect of low-temperature storage of eggs (host) and pupae and adults (parasitoid) on the biology and parasitism capacity of the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). Viable stored Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) eggs were parasitized to the same degree or even higher than fresh eggs when stored until 14 days at 5°C or until 21 days at 10°C. In contrast, the percentage of parasitized sterilized eggs was equal to the control only when stored for 7 and 14 days. Survival of T. remus pupae declined with storage time at both studied temperatures (5 and 10°C). However, after 7 days of storage, survival of pupae was still 86.3 and 64.9% at 10 and 5°C, respectively. The number of adult male survivors remained similar until the fourth storage day at both 5 and 10°C. In contrast, female survival did not differ until day 8 at 10°C or day 6 at 5°C. Parasitism capacity of stored adults was not altered by storage compared with the control. Therefore, we conclude that the maximal storage time at 10°C is 21 days for viable C. cephalonica eggs and 7 days for T. remus pupae, while parasitoid adults should not be stored for more than 4 days at either 5 or 10°C.  相似文献   

20.
Livestock grazing is known to influence carbon (C) storage in vegetation and soil. Yet, for grazing management to be used to optimize C storage, large scale investigations that take into account the typically heterogeneous distribution of grazers and C across the landscape are required. In a landscape-scale grazing experiment in the Scottish uplands, we quantified C stored in swards dominated by the widespread tussock-forming grass species Molinia caerulea. The impact of three sheep stocking treatments (‘commercial’ 2.7 ewes ha?1 y?1, ‘low’ 0.9 ewes ha?1 y?1 and no livestock) on plant C stocks was determined at three spatial scales; tussock, sward and landscape, and these data were used to predict long-term changes in soil organic carbon (SOC). We found that tussocks were particularly dense C stores (that is, high C mass per unit area) and that grazing reduced their abundance and thus influenced C stocks held in M. caerulea swards across the landscape; C stocks were 3.83, 5.01 and 6.85 Mg C ha?1 under commercial sheep grazing, low sheep grazing and no grazing, respectively. Measured vegetation C in the three grazing treatments provided annual C inputs to RothC, an organic matter turnover model, to predict changes in SOC over 100 years. RothC predicted SOC to decline under commercial sheep stocking and increase under low sheep grazing and no grazing. Our findings suggest that no sheep and low-intensity sheep grazing are better upland management practices for enhancing plant and soil C sequestration than commercial sheep grazing. This is evaluated in the context of other upland management objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号