首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catecholamines and acetylcholinesterase were determined by histochemical methods in neurons of the intramural plexus of the cat urinary bladder. The ganglia of this plexus were found to differ in the number of neurons they contained (from five to 150 cells). Adrenergic, cholinergic, and mixed ganglia exist. Division of the pelvic nerves increased the catecholamine content in adrenergic neurons and fibers and reduced acetylcholinesterase activity. Division of the hypogastric nerves has no effect on the catecholamine level and acetylcholinesterase activity in ganglia of the intramural plexus of the urinary bladder.Institute of Physiology, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 263–270, March–April, 1985.  相似文献   

2.
The kinetics of cholinesterase activity in the sensomotor cortex, hippocampus, and anterior hypothalamus was determined in 93 rats by an electrometric method using an automatic recording system. The localization of acetylcholinesterase in the cell structures was revealed histochemically. In the control animals acetylcholinesterase was distributed unevenly among these structures. In rats aged 1 month its activity was higher in the sensomotor cortex. At later age periods (6, 12, 24 months) the acetylcholinesterase activity was highest in the posterior hypothalamus. While the unevenness of distribution of this substance continued to be observed, the level of its activity fell with age. A redistribution of acetylcholinesterase activity compared with the control was found 15 min after subcutaneous injection of adrenalin (300 µg/kg). Its activity was maximal in the anterior hypothalamus. The acetycholinesterase activity in all these structures was lowered after subcutaneous injection of chloral hydrate (300 mg/kg). Meanwhile the differences in the character of its distribution between the individual structures disappeared. These results indicate definite correlation between the functional state of the CNS and the distribution of acetylcholinesterase activity in the brain structures studied.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 47–53, January–February, 1973.  相似文献   

3.
Histochemical study of neuronally isolated area AI of the auditory cortex in cats by the reaction for acetylcholinesterase 3 days and 1, 2, and 3 weeks after undercutting showed that the cholinergic neuropil of this area is formed mainly by incoming fibers and to a lesser degree by processes from a few intrinsic cholinergic neurons. The intrinsic cholinergic neurons include, first, cholinergic long-axon association neurons responding to cortical isolation by retrograde changes and by hyperreaction to acetylcholinesterase (Cajal-Retzius cells of layer I and neurons of layer VI, whose axons run into the subcortical layer of association fibers), and, second, cholinergic short-axon association neurons of layers II–VI, preserving their normal cell structure and moderate acetylcholinesterase activity after isolation. Axon collaterals of similar cells terminate on neighboring neurons. Short-axon neurons are more numerous in the lower layers of the cortex, and exceed in number the long-axon association neurons. Choliniceptive neurons (pyramidal and stellate), on whose bodies and proximal dendrites are located terminals formed by axons of cholinergic association neurons, are found in the isolated cortex. Choliniceptive neurons are found more often in the lower layers of the cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 81–87, January–February, 1984.  相似文献   

4.
To study various aspects of GABAergic metabolism in an easily accessible system, dissociated cells from postnatal rat cerebral cortex were cultured in a serum-based medium and characterized morphologically and biochemically. The majority (70–90%) of the neurons were GABAergic as determined by three double-labeling procedures. The specific activity of glutamine synthetase in the cultures was 4–5% of the levels in rat astrocyte cultures and intact rat brain, indicating that glia were a minor component. The developmental increase of GABA levels preceded the increase of GAD activity in both immunocytochemical and biochemical experiments. GABA turnover rates also increased with culture age and were 20–30% of GAD activity. Four anti-GAD antibodies, which recognize GAD subunits with differing molecular masses to varying degrees, were used to stain cultured neurons and make immunoblots. Immunoblots showed that the neurons contained two major subunits of GAD which differed in mass by 2 kDa. All four antibodies immunostained both neuronal perikarya and neurites but one antibody, which on the immunoblots predominantly labeled the GAD protein with the lower molecular weight, showed a somewhat more pronounced punctate staining, possibly indicating a principal localization to neurites.  相似文献   

5.
Plexuses of cholinergic varicose fibers, differing in density in different layers of the neuropil, were found in area AI of the cat's auditory cortex by the histochemical reaction for acetylcholinesterase: Their density was maximal or average in layer I or deeper layers and minimal in layers II and III. Among cells in area AI those which are cholinergic are a few stellate neurons located in layers II–VI. Axons of some neurons terminate on neighboring cells, those of others (some neurons in layer VI) run into the subcortical layer of arcuate association fibers. Cholinergic terminals are located on the bodies and proximal areas of dendrites of neurons most of which do not contain acetylcholinesterase. Choliniceptive neurons of different sizes and shapes are found in all layers of this region of the auditory cortex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 75–81, January–February, 1984.  相似文献   

6.
Summary The distribution of the acetylcholinesterase, non-specific cholinesterase and non-specific esterase activity has been investigated histochemically in the hypothalamic neurons during the ontogenic development of the rat.Acetylcholinesterase activity is located in the supra-optic and para-ventricular nuclei mostly, but some activity is present in the other nuclei and in the median eminence of the adult rat, as well. The supra-chiasmatic neurons are always negative. The activity of non-specific cholinesterase was encountered in the endothelial cells of the capillaries, in the glia and in the ependymal cells especially around the supra-optic and para-ventricular neurons. The localization of the non-specific esterase was similar to that of the non-specific cholinesterase, but in addition activity is seen in the supra-optic and para-ventricular perikarya, in the parvo-cellular neurons of the tuberal area and in the median eminence. No sexual differences were seen in the distribution of the estrase activity.The appearance of acetylcholinesterase took place already before birth. At about the 16th post-coital day the area from which the arcuate and ventro-medial nuclei will differentiate was positive for acetylcholinesterase. A strong activity in these nuclei was observed during the critical period of the sexual differentiation of the rat hypothalamus (0–10 postnatal days). In the development of the non-specific cholinesterase and esterase no similar variation was seen. Acetylcholinesterase and non-specific esterase were seen in the neurosecretory nuclei before birth, non specific cholinesterase after birth, and non-specific esterase in the parvo-cellular neurons during the first post-natal week.Supported by a grant from The Finnish Medical Society Duodecim.  相似文献   

7.
The cause of parathion and propoxur resistance inTyphlodromus pyri was studied in a Dutch strain in which resistance was dependent on a semi-dominant gene. Activity of glutathione S-transferase and acetylcholinesterase and reaction rate of acetylcholinesterase with paraoxon and propoxur were measured in this resistant (R) and in a susceptible (S) strain. The R strain was 100-fold resistant to parathion and 2300-fold resistant to propoxur. A 36-fold reduction was found in rate of inhibition of acetylcholinesterase in the R strain for paraoxon, and a 14-fold reduction for propoxur. In combination with the monogenic nature of the resistance, this proves that the insensitivity of acetylcholinesterase is the cause of resistance. The rate constant of acetylcholinesterase inhibition at 25°C in the S and R strains was 1.5×105 and 4.2×103 M –1 min–1 respectively for paraoxon, and 5.1×104 and 3.6×103 M –1 min–1 for propoxur. There was no significant difference between the R and S strains in glutathione S-transferase activity. The R strain had a somewhat lower acetylcholinesterase activity than the S strain.  相似文献   

8.
Responses of 155 neurons 3 weeks after neuronal isolation of a slab of auditory cortex (area AI) to single intracortical stimulating pulses at the level of layer IV were studied in unanesthetized, curarized cats during paroxysmal electrical activity evoked by series of high-frequency (10–20 Hz) electrical stimulation by a current 2–5 times above threshold for the direct cortical response. In response to such stimulation a discharge of paroxysmal electrical activity, lasting from a few seconds to tens of seconds, appeared in the slab. As a rule it consisted of two phases — tonic and clonic. This indicates that cortical neurons can form both phases of paroxysmal cortical activity. Depending on behavior of the neurons during paroxysmal electrical activity and preservation of their ability to respond to intracortical stimulation at this time, all cells tested in the isolated slab were divided into four groups. Their distribution layer by layer and by duration of latent periods was studied. Two-thirds of the neurons tested were shown to generate spike activity during paroxysmal discharges whereas the rest exhibited no such activity. A special role of neurons in layer II in generation of paroxysmal activity in the isolated slab was noted. The view is expressed that at each moment functional neuronal circuits, independent of each other, exist in the slab and also, evidently in the intact cortex, which can interact with one another when conditions change.I. I. Mechnikov Odessa State University. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 3–11, January–February, 1984.  相似文献   

9.
Unit activity in the midbrain periaqueductal gray matter (PGM) during an instrumental placing reflex, its extinction, differentiation, and conditioned inhibition, was studied in chronic experiments on cats. Spike responses 1–2 sec in duration in 69 (36.7%) of 182 neurons preceded by 400–800 msec the beginning of conditioned-reflex and voluntary intertrial movements. These advanced responses appeared 200 msec before the corresponding advance responses of motor cortical neurons. Fifty-eight neurons (30.9%) responded directly to acoustic stimulation with a latent period of 10–50 msec for 2–6 sec, 19 neurons (10.1%) generated double responses, linked with both the acoustic stimulus and subsequent conditioned-reflex movement, and 42 neurons (22.3%) did not respond to acoustic stimulation, although individual neurons of this group changed the level of their spontaneous activity in response to repeated conditioned stimulation, and this change was maintained for some tens of minutes. Extinction, differentiation, and conditioned inhibition all abolished conditioned-reflex movements, but each type of internal inhibition was accompanied by its own characteristic changes in the firing pattern of PGM neurons. Functional independence of neurons of the first and second groups was demonstrated during extinction and recovery of the conditioned-reflex. The results indicate the important role of PGM not only in the mechanism of the conditioned reflex, but also in the development of its internal inhibition.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 403–419, May–June, 1984.  相似文献   

10.
The effects of chronic ethanol or sucrose administration to rats on acetylcholinesterase from brain and liver were investigated. Membrane-bound and soluble acetylcholinesterase activities were determined in fractions prepared by centrifugation. The thermal stability and the effects of temperature and different types of alcohols on acetylcholinesterase activity were also studied. Membrane-bound acetylcholinesterase activity increased (p < 0.01) in the liver after chronic ethanol administration, whereas no differences among groups in the encephalic areas, except in the brain stem soluble form, were found. Membrane-bound acetylcholinesterase from the ethanol- and sucrose-treated groups was more stable at the different temperatures assayed between 10 and 50°C than that corresponding to the control group. Non-linear Arrhenius plots were obtained with preparations of membrane-bound acetylcholinesterase from rat liver, with discontinuities at 30°C (control or sucrose groups) or 34–35°C (alcohol group). Assays made with membrane-bound or soluble enzyme from brain showed linear Arrhenius plots in all groups studied. The inhibitory effects of increasing concentrations of ethanol, n-propanol and n-butanol on acetylcholinesterase preparations from forebrain, cerebellum, brain stem and liver of the three experimental groups (control, sucrose-fed and ethanol-fed) were very similar. However, n-butanol displayed a biphasic action on particulate or soluble preparations of rat forebrain. n-butanol inhibited (competitive inhibition) at higher concentrations (250–500 mM), while at lower concentrations (10–25 mM), the alcohol inhibited at low substrate concentrations but activated at high substrate concentration. These results suggest that the liver is more affected by ethanol than the brain. Moreover, the lipid composition of membranes is probably modified by ethanol or sucrose ingestion and this would affect membrane fluidity and consecuently the behaviour of acetylcholinesterase.  相似文献   

11.
Summary We have used a cytochemical technique to investigate the distribution of acetylcholinesterase (AChE) activity in the antenna of the sphinx moth Manduca sexta. High levels of echothiophate-insensitive (presumably intracellular) AChE activity were found in six different types of antennal receptors localized in specific regions of the three antennal segments of the adult moth. Mechanosensory organs in the scape and pedicel, the Böhm bristles and Johnston's organ, are innervated by AChE-positive neurons. In each annulus of the antennal flagellum, AChE-positive neurons are associated with six sensilla chaetica and a peg organ, probably a sensillum styloconicum. At least 112 receptor neurons (8–10 per annulus) innervating the intersegmental membranes between the 14 distalmost annuli also exhibit high levels of echothiophate-resistant AChE. In addition, each annulus has more than 30 AChE-positive somata in the epidermis of the scale-covered (back) side of the flagellum, and 4 AChE-positive somata reside within the first annulus of the flagellum. Since none of the olfactory receptor neurons show a high level of echothiophateresistant AChE activity, and all known mechanoreceptors are AChE-positive, apparently intracellular AChE activity in the antenna correlates well with mechanosensory functions and is consistent with the idea that these cells employ acetylcholine as a neurotransmitter.  相似文献   

12.
Reflex discharges in intercostal nerves and activity of reticulospinal fibers of the ventral and lateral funiculi, evoked by stimulation of the reticular formation and of the splanchnic and intercostal nerves were investigated in cats anesthetized with chloralose (50 mg/kg). Brain-stem neuronal structures participating in the "relaying" of spino-bulbo-spinal activity were shown to lie both in the medial zones of the medullary and pontine reticular formation and in its more lateral regions; they include reticulospinal neurons and also neurons with no projection into the spinal cord. Structures whose stimulation led to prolonged (300–800 msec) inhibition of reflex spino-bulbo-spinal activity were widely represented in the brain stem, especially in the pons. Analogous inhibition of this activity was observed during conditioning stimulation of the nerves. Reticulospinal fibers of the ventral (conduction velocity 16–120 m/sec) and lateral (17–100 m/sec) funiculi were shown to be able to participate in the conduction of spino-bulbo-spinal activity to spinal neurons. In the first case fibers with conduction velocities of 40–120 m/sec were evidently most effective. Evidence was obtained that prolonged inhibition of this activity can take place at the supraspinal level.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Czechoslovakia. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 373–383, July–August, 1976.  相似文献   

13.
Experiments with cats immobilized with arduane showed that a single intravenous injection of ethanol (1 g/kg) affects 95% of the neurons of the lateral vestibular nucleus. In 56.5% of the neurons that have predominantly high-frequency base activity of the continuously arrhythmic type, injecting ethanol decreased impulse frequency by 84–93%. In 14.5% of the cells, mainly with bundle-group type activity, there was first an increase in average discharge frequency, the duration of the bundles and number of impulses in them, were replaced by a sharp inhibition of base activity, even complete suppression, in 20–30 min after ethanol injection. In 23.6% of the neurons, predominantly with an initial low frequency of base activity, a clear excitation effect developed and was recorded over the whole period of observation. Restoration of base activity to the original level usually did not occur even after 90 min. Repeated injection of the same dose of ethanol had a cumulative effect.Ivano-Frank Medical Institute, Ukrainian Ministry of Public Health. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 145–151, March–April, 1992.  相似文献   

14.
The ontogenetic development of the enzymes phosphate activated glutaminase (PAG), glutamate dehydrogenase (GLDH), glutamic-oxaloacetic-transaminase (GOT), glutamine synthetase (GS), and ornithine--aminotransferase (Orn-T) was followed in cerebellum in vivo and in cultured cerebellar granule cells. It was found that PAG, GLDH, and GOT exhibited similar developmental patterns in the cultured neurons compared to cerebellum. PAG showed, however, a more pronounced phosphate activation in the cultured granule cells compared to in vivo. The activity of GS remained low in the cultured neurons compared to the increasing activity of this enzyme found in vivo. On the other hand Orn-T exhibited an increase in its specific activity in the cultured cells as a function of time in culture in contrast to the non-changing activity of this enzyme in vivo. Compared to cerebellum the cultured neurons exhibited higher activities of GLDH, GOT, and Orn-T whereas the activity of PAG was only slightly higher in the cultured cells. The activity of GS in the cultured neurons was only 5–10% of the activity in cerebellum in vivo. It is concluded that cultured cerebellar granule cells represent a reliable model system by which the metabolism and function of glutamatergic neurons can be conveniently studied in a physiologically meaningful way.  相似文献   

15.
It was shown during experiments on cats undergoing surgery under ketamine-induced anesthesia and immobilized with myorelaxin that applying trains of stimuli to the locus coeruleus (LC) produces an effect on 79% of parietal cortex neurons. This manifests as inhibition lasting 300–700 msec or a 16–32% decline in the activity rate of neurons with background activity. Hyperpolarization of 5–7 mV lasting 120–500 msec preceded by a latency of 30–90 msec was noted in such neurons as well as "silent" cells during intracellular recording. Duration of the inhibitory pause in neuronal background activity induced by transcallosal stimulation (TCS) increased by 50–200 msec under the effects of conditioned stimuli applied to the LC. Duration of the IPSP triggered by TCS likewise increased (by 50–100 msec) under the effects of LC stimulation. It was concluded that the effects of stimulating the LC on neuronal activity in the parietal cortex may manifest either directly, as inhibition of background activity and hyperpolarization, or else as modulation of influences exerted by other neurotransmitters.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 486–494, July–August, 1990.  相似文献   

16.
Spontaneous unit activity in association area 5 and some projection areas of the cortex (first somatosensory, first and second auditory areas) were studied in cats immobilized with D-tubocurarine in which the index of specific spontaneous activity, the mean frequency, types of spontaneous activity, and statistical parameters — distribution of interspike intervals and autocorrelation function — were determined. The results showed that spontaneous unit activity in the association area differs from that in the projection areas in both intensity and character. A special feature of the spontaneous activity of the auditory areas was a well-marked volley distribution of activity. In the somatosensory area the level of spontaneous activity as reflected in all indices was the lowest. In the association cortex the largest number of neurons with spontaneous activity lay at a depth of 500–1000 µ corresponding to cortical layers III–IV. In the first auditory area neurons with spontaneous activity were concentrated at a depth of 1400 µ (layer V) and in the somatosensory area at a depth of 1000–1400 µ (alyers IV–V). The possible functional significance of these differences is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 1, pp. 13–21, January–February, 1976.  相似文献   

17.
Background activity was investigated in 272 neurons of the ventrolateral thalamic nucleus (VLTN) before and after systemic administration of neuroleptics (haloperidol and droperidol) at cataleptic doses by means of extracellular techniques during chronic experiments on cats. Autocorrelation and spectral analysis revealed regularly-occurring changes in the background activity rate of VLTN neurons, the periodicity of which changed by fractions of seconds (0.2–0.8 sec), seconds (1.5–10 sec), or tens of seconds (12–30 sec). While numbers of neurons with individual types of periodic activity did not exceed 6–8% in intact animals, it did increase to 18–30% after administering neuroleptics. Raised numbers of neurons with two types of regularly occurring processes within a single spike train were also noted. Experimentally-produced data were compared with findings from clinical observations. Quantities of neurons with different variations in the periodicity of their firing activity reached 19–46% in patients with parkinsonism but did not exceed 4–8% in those with torsion dystonia. The genesis of raised rhythmic firing in thalamic neurons occurring with parkinsonism is thought to be associated with impaired catecholaminergic (both dopaminergic and -adrenergic) transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 359–368, May–June, 1990.  相似文献   

18.
Unit responses of the lateral geniculate bodies (LGB) to polarization of the cells through the recording microelectrode were investigated in acute experiments on cats anesthetized with Nembutal. Under the influence of anodic polarization the firing rate of the LGB cells clearly increased. Complete adaptation of the cells to the polarizing current was not observed during the time intervals investigated (5–10 min). Cathodic polarization by a current of 5–50 nA induced inhibitory effects; neurons with a single type of spontaneous activity under these circumstances generated volleys of 2–5 spikes. Off-responses were recorded in 75–85% of neurons. It is postulated that complex changes in unit activity produced by polarization may be due to the structural characteristics of the functional connections of the LGB neurons investigated. The change to grouped activity on the part of many of the neurons under the influence of cathodic polarization is evidently explained by the specific functional pattern of the synaptic system of the LGB cells.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 130–140, March–April, 1972.  相似文献   

19.
Structures containing acetylcholinesterase were found in the motor nuclei of the cervical enlargement of the cat spinal cord by light and electron microscopy in material stained by the Karnovsky-Roots method. The specific response was observed not only in neurons of the motor nuclei, but also in some satellite cells, astrocytic glial cells, and Schwann cells. A positive reaction for acetylcholinesterase was found in some of the satellite cells located close to both cholinergic and noncholinergic neurons. As a result of electron microscopy, an electron-dense deposit of copper ferrocyanide was found on the structures of the nucleolus, on the surface of the inner and outer layers of the nuclear membrane, in the pores of the nuclear membrane, in the perinuclear space, and in the endoplasmic reticulum of the perikaryon of some satellite cells, as well as on the outer and inner surfaces of the cytoplasmic membrane of the Schwann cells.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev, Translated from Neirofiziologiya, Vol. 9, No. 1, pp. 48–51, January–February, 1977.  相似文献   

20.
Tonic activity in rabbit superior cervical ganglion neurons was investigated using intracellular recording techniques as well as changes produced when the animal breathed a gaseous mix with a raised CO2 level. The test neurons were divided into three groups depending on the pattern of their tonic activity and reflex change. Action potentials were produced by the activity of dominant and accessory preganglionic inputs in the firing pattern of all neuronal groups, implying the existence of other types of inputs into the neurons innervating different organs. Having analyzed changes in action potential rate and EPSP in the tonic activity of neurons from different groups, it was presumed that preganglionic fibers with a similar activity pattern converge on the majority of neurons in each group.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 665–672, September–October, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号