首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
PIII snake venom metalloproteases (SVMPs) are metalloproteases structurally related to ADAMs (a disintegrin and metalloprotease human family of proteins). Berythractivase and jararhagin are PIII SVMPs with 69% homology that have different hemostatic properties. In order to clarify these differences and further characterize the biological effects of these proteins, we have analyzed the effect of both proteases on human umbilical-vein endothelial cell functions. We found that both proteins enhanced nitric oxide generation, prostacyclin production and interleukin-8 release. Berythractivase but not jararhagin increased the expression of decay accelerating factor. Jararhagin decreased cell viability in a concentration-dependent manner and induced cellular apoptosis, while berythractivase did not modulate cell survival. Our results show for the first time that, besides the known anti-aggregating or procoagulant effects of PIII SVMPs, these proteins trigger endothelial cell effector responses. Although structurally related, berythractivase and jararhagin induce a dissimilar generation and release of endothelial molecules that may account for their different hemorrhagic activity.  相似文献   

2.
Epithelial and endothelial cells are susceptible to a subset of apoptosis known as anoikis. This type of programmed cell death is activated upon disruption of cell-substrate contacts. Here we demonstrate that mouse F9 embryonal carcinoma cell line acquires susceptibility to anoikis upon retinoic acid-induced differentiation towards non-malignant pariental endoderm-like cells. F9 cells survival becomes dependent on the substrate by the 4th day of retinoic acid treatment, when cells assume epithelial phenotype as revealed by actin, alpha-actinin and vinculin expression and distribution, and when focal adhesion contacts are formed. Differentiated F9 cells die in suspension by apoptosis as revealed by oligonucleosomal DNA laddering, DAPI staining and DNA flow cytometry analysis. On the contrary, undifferentiated F9 cells form large multicellular aggregates in suspension and survive. Thus, F9 cell line provides a new model to study pathways involved in both anoikis induction and inhibition.  相似文献   

3.
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.  相似文献   

4.
Objective: Transglutaminase 2 (TG2) is a multifunctional protein with an important role in vascular biology, where it is involved in cell–matrix interaction, cell attachment and cell population expansion. In efforts to elucidate the role of TG2 in endothelial cell biology, in this study, we measured several endothelial cell characteristics in cells where TG2 was specifically knocked down by RNAi. Materials and methods: The effect of small interfering RNA (siRNA)‐TG2 on human umbilical vein endothelial cells was studied. Adhesion and cell viability were assessed by chemical reduction of MTT, and cell proliferation was analysed by flow cytometry. Apoptosis was evaluated by annexin V/PI dual staining and protein expression level was assayed by western blotting. Results: We found that siRNA‐TG2 reduced endothelial cell number, lead to cell adhesion deficiency, cell cycle arrest in G1 phase and induction of apoptosis. Our results show that exogenously added TG2 could reverse loss of adhesion but did not overcome the defect in cell proliferation, nor could it inhibit siRNA‐TG2‐induced apoptosis. Conclusion: We conclude that TG2 loss in endothelial cells causes reduction in cell number as a result of cell cycle arrest, flaws in adhesion and induction of apoptosis. Our results imply that reduction in cell number and increased apoptosis in response to TG2 silencing is independent of the cell adhesion process. Altogether, our findings underline the significance of TG2 in endothelial cell cycle progression and cell survival, in vitro.  相似文献   

5.

Objectives

Ability of a cell to survive without adhesion, and to overcome anoikis, is indispensable for malignant cell invasion and metastasis formation. It has previously been shown that TrkB ‐neutrophin growth factor receptor might be involved in suppression of apoptosis, induced by the lack of adhesion. The aim of our study was to analyse changes in expression of genes and proteins as well as in biological properties of cancer cells cultured without adhesion. A mouse sarcoma, stable, adherent L1 cell line, derived from a spontaneously arisen Balb/c mouse lung tumour, was established in vitro.

Materials and methods

L1 cells resistant to anoikis were established by culture of L1 cells without adhesion, followed by selection of clones with elevated expression levels of TrkB protein. Biological characteristics of the cells were studied by migration/invasion tests and colony forming assay. Gene expression analysis was performed by with the aid of cDNA Gene Expression Array and Real‐Time PCR. In vivo experiments were conducted in syngeneic Balb/c mice.

Results

Significant changes in gene expression, including higher expression level of TrkB, were found in cells that were able to survive without adhesion. Selected TrkB‐expressing clones were found to have higher clonogenicity and invasive potential, formed more colonies in mouse lungs, and induced larger tumours, when injected subcutaneously into Balb/c mice.

Conclusion

Lack of adhesion induced significant changes in the cancer cells’ behaviour, which may result from alterations in gene and protein expression levels, including changes in anoikis‐connected protein – TrkB.
  相似文献   

6.
The protein kinase C (PKC) inhibitor safingol increased rounding and detachment of human oral squamous cell carcinoma (SCC) cells in monolayer cultures. When dissociated cells were incubated in the presence of safingol, cell adhesion was prevented and cell viability was lost gradually, while most cells survived in the absence of safingol even if their attachment was blocked by coating the culture plates with polyhydroxyethyl methacrylate. Flow cytometric analysis and agarose gel electrophoresis of cellular DNA revealed an increase in the proportion of sub-G1 cells and DNA fragmentation, indicating that safingol induced apoptosis of dissociated cells. During the induction of apoptosis in cell suspensions by safingol, there was an increase of the pro-apoptotic BH-3 only protein Bim and decrease of pro-survival Bcl-2 family proteins Bcl-xL and mitochondrial pro-apoptogenic factor endonuclease G translocated to the nucleus. The level of phosphorylated focal adhesion kinase (FAK) required for cell survival also rapidly decreased, followed by a decrease in the protein level. The introduction of siRNA against PKCα into SAS cells resulted in an increase of Bim, a decrease of Bcl-xL, the translocation of endonuclease G, and a decrease in the phosphorylation of FAK. These results suggest that Bim, Bcl-xL, FAK and endonuclease G are involved in safingol-induced apoptosis of detached oral SCC cells. Safingol can be used to induce apoptosis with cell detachment, anoikis, of oral SCC cells.  相似文献   

7.
The integrins alpha(2)beta(1) and alpha(1)beta(1) have been shown to modulate cellular activities of fibroblasts on contact with fibrillar collagen. Previously it has been shown that collagen binding to alpha(2)beta(1) regulates matrix metalloproteinase MMP-1 and membrane-type MT1-MMP expression. Jararhagin is a snake venom metalloproteinase of the Reprolysin family of zinc metalloproteinases, containing a metalloproteinase domain followed by disintegrin-like and cysteine-rich domains. Jararhagin blocks type I collagen-induced platelet aggregation by binding to the alpha(2)beta(1) integrin and inhibiting collagen-mediated intracellular signaling events. Here we present evidence that, in contrast to the observations in platelets, jararhagin binding to the integrin receptor alpha(2)beta(1) in fibroblasts produces collagen-like cell signaling events such as up-regulation of MMP-1 and MT1-MMP. Inactivation of the metalloproteinase domain had no effect on these properties of jararhagin. Thus, in fibroblasts the snake venom metalloproteinase jararhagin functions as a collagen-mimetic substrate that binds to and activates integrins. Given the homology between the metalloproteinase, disintegrin-like and cysteine-rich domains of jararhagin and those of the members of the ADAMs (a disintegrin-like and metalloproteinase) family of proteins, this work demonstrates the potential of the disintegrin-like/cysteine-rich domains in the ADAMs as cellular signaling agents to elicit responses relevant to the biological function of these proteins.  相似文献   

8.
Control of adhesion-dependent cell survival by focal adhesion kinase   总被引:23,自引:3,他引:20       下载免费PDF全文
The interactions of integrins with extracellular matrix proteins can activate focal adhesion kinase (FAK) and suppress apoptosis in normal epithelial and endothelial cells; this subset of apoptosis has been termed "anoikis." Here, we demonstrate that FAK plays a role in the suppression of anoikis. Constitutively activated forms of FAK rescued two established epithelial cell lines from anoikis. Both the major autophosphorylation site (Y397) and a site critical to the kinase activity (K454) of FAK were required for this effect. Activated FAK also transformed MDCK cells, by the criteria of anchorage-independent growth and tumor formation in nude mice. We provide evidence that this transformation resulted primarily from the cells' resistance to anoikis rather than from the activation of growth factor response pathways. These results indicate that FAK can regulate anoikis and that the conferral of anoikis resistance may suffice to transform certain epithelial cells.  相似文献   

9.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

10.
Capillary endothelial cells can be switched between growth and apoptosis by modulating their shape with the use of micropatterned adhesive islands. The present study was carried out to examine whether cytoskeletal filaments contribute to this response. Disruption of microfilaments or microtubules with the use of cytochalasin D or nocodazole, respectively, led to levels of apoptosis in capillary cells equivalent to that previously demonstrated by inducing cell rounding with the use of micropatterned culture surfaces containing small (<20 microm in diameter) circular adhesive islands coated with fibronectin. Simultaneous disruption of microfilaments and microtubules led to more pronounced cell rounding and to enhanced levels of apoptosis approaching that observed during anoikis in fully detached (suspended) cells, indicating that these two cytoskeletal filament systems can cooperate to promote cell survival. Western blot analysis revealed that the protein kinase Akt, which is known to be critical for control of cell survival became dephosphorylated during cell rounding induced by disruption of the cytoskeleton, and that this was accompanied by a decrease in bcl-2 expression as well as a subsequent increase in caspase activation. This ability of the cytoskeleton to control capillary endothelial cell survival may be important for understanding the relationship among extracellular matrix turnover, cell shape changes, and apoptosis during angiogenesis inhibition.  相似文献   

11.
Nitric oxide: a potential inducer of adhesion-related apoptosis--anoikis.   总被引:2,自引:0,他引:2  
Among the many initiating events that lead to apoptosis or programmed cell death, loss of contact between the cell and the extracellular matrix has been extensively studied. Adhesion-related apoptosis referred to as anoikis is initiated by the action of anti-adhesive substances. Nitric oxide is one of these anti-adhesive substances that have the capacity to signal and trigger pro-apoptotic events in a variety of cell types. Nitric oxide can inhibit cell adhesion, interfere with the assembly of focal adhesion complexes, and disrupt the cell-extracellular matrix interactions. These actions occur in cell that exhibit a dissociation of growth factor signals from alterations in the cytoskeleton, ultimately leading to apoptosis. Since this involves anti-adhesive events, nitric oxide can be considered as causing anoikis. This review article summarizes the available evidence of how nitric oxide participates in apoptosis induced by loss of anchorage (anoikis).  相似文献   

12.
Survival of endothelial cells is critical for cellular processes such as angiogenesis. Cell attachment to extracellular matrix inhibits apoptosis in endothelial cells both in vitro and in vivo, but the molecular mechanisms underlying matrix-induced survival signals or detachment-induced apoptotic signals are unknown. We demonstrate here that matrix attachment is an efficient regulator of Fas-mediated apoptosis in endothelial cells. Thus, matrix attachment protects cells from Fas-induced apoptosis, whereas matrix detachment results in susceptibility to Fas-mediated cell death. Matrix attachment modulates Fas-mediated apoptosis at two different levels: by regulating the expression level of Fas, and by regulating the expression level of c-Flip, an endogenous antagonist of caspase-8. The extracellular signal-regulated kinase (Erk) cascade functions as a survival pathway in adherent cells by regulating c-Flip expression. We further show that detachment-induced cell death, or anoikis, itself results from activation of the Fas pathway by its ligand, Fas-L. Fas-L/Fas interaction, Fas-FADD complex formation, and caspase-8 activation precede the bulk of anoikis in endothelial cells, and inhibition of any of these events blocks anoikis. These studies identify matrix attachment as a survival factor against death receptor-mediated apoptosis and provide a molecular mechanism for anoikis and previously observed Fas resistance in endothelial cells.  相似文献   

13.
Anoikis is a form of programmed cell death induced by loss of contact from neighboring cells or from their extracellular matrix (ECM). Many tumorigenic cells are anoikis resistant, facilitating cancer progression and metastasis. Trastuzumab is a monoclonal antibody used for the treatment of breast and gastric cell cancer, but its mechanism of action is not well elucidated and its target molecules not well defined. Heparan sulfate proteoglycans (HSPGs) and glycosaminoglycans (GAGs) play important roles in tumor development and in response of cancer cells to drugs. This study investigates the effect of trastuzumab on the expression of HSPGs and sulfated glycosaminoglycans (SGAGs) in anoikis-resistant endothelial cells. After trastuzumab treatment, endothelial cells resistant to anoikis show an increase in adhesion to fibronectin followed by a decrease in invasion, proliferation, and angiogenic capacity. In addition, a significant increase in the number of cells in the S phase of the cell cycle was also observed. In relation to HSPGs and SGAGs expression, we observed a decrease in syndecan-4 and perlecan expression, as well as in the heparan sulfate biosynthesis in anoikis-resistant endothelial cells after exposure to trastuzumab. Our results suggest that trastuzumab interacts with GAGs and proteoglycans of the cell surface and ECM and through this interaction controls cellular events in anoikis-resistant endothelial cells.  相似文献   

14.
Hyperthermia induces several cellular responses leading to morphological changes, cell detachment and death. Loss of integrins from the cell surface after acute heat-treatment may block several physiological signalling pathways, but whether the assembly network between integrin and cytoskeletal actin is perturbed during hyperthermic treatment is unknown. In this study we tested this hypothesis by evaluating cell morphology, protein cytoskeletal profile and integrin CD11a content in both adherent and floating SK-N-MC human neuroblastoma cells. Morphological and cytometric analyses confirmed that hyperthermia is an effective apoptotic trigger, revealing the typical chromatin margination, cell shape changes and 7-AAD incorporation. After hyperthermia, cytoskeletal proteins showed an increase of high-molecular-weight aggregates and a significant decrease of both actin and CD11a content with respect to control cells. The integrin CD11a and membrane-bound actin alterations found in detached floating neuroblastoma cells recovered after heat-shock may cause the cytoskeletal abnormalities related to the observed surface cell rounding/blebbing and anoikis, early events of hyperthermia-induced programmed cell death.  相似文献   

15.
Changes in vascular endothelial (VE)-cadherin-mediated cell-cell adhesion and integrin-mediated cell-matrix adhesion coordinate to affect the physical and mechanical rearrangements of the endothelium, although the mechanisms for such cross talk remain undefined. Herein, we describe the regulation of focal adhesion formation and cytoskeletal tension by intercellular VE-cadherin engagement, and the molecular mechanism by which this occurs. Increasing the density of endothelial cells to increase cell-cell contact decreased focal adhesions by decreasing cell spreading. This contact inhibition of cell spreading was blocked by disrupting VE-cadherin engagement with an adenovirus encoding dominant negative VE-cadherin. When changes in cell spreading were prevented by culturing cells on a micropatterned substrate, VE-cadherin-mediated cell-cell contact paradoxically increased focal adhesion formation. We show that VE-cadherin engagement mediates each of these effects by inducing both a transient and sustained activation of RhoA. Both the increase and decrease in cell-matrix adhesion were blocked by disrupting intracellular tension and signaling through the Rho-ROCK pathway. In all, these findings demonstrate that VE-cadherin signals through RhoA and the actin cytoskeleton to cross talk with cell-matrix adhesion and thereby define a novel pathway by which cell-cell contact alters the global mechanical and functional state of cells.  相似文献   

16.
The two‐way communication between the ECM (extracellular matrix) and the cytoplasm via the integrins has many functions in cancer cells, including the suppression of apoptosis. As cells in a 3D (three‐dimensional) architecture resemble the in vivo situation more closely than do cells in more conventional 2D cultures, we have employed a substratum that prevents cell adhesion and induces cell aggregation to determine why highly metastatic B16F10 melanoma cells resist anoikis. We compared the behaviour of B16F10 cells in 2D [on tPS (tissue culture polystyrene)] and 3D culture {on polyHEMA [poly(2‐hydroxyethylmethacrylate)]} configurations. For this, we analysed cell morphology, proliferation, apoptosis and the activation status of several proteins involved in cell proliferation and survival [RhoA, FAK (focal adhesion kinase), Akt, ERK1/2 (extracellular‐signal‐regulated kinase 1/2)]. B16F10 cells in 3D architecture were able to proliferate as cell aggregates for 3 days, after which the number of cells decreased. The normal Swiss 3T3 cells used as an anoikis‐sensitive control did not proliferate on the anti‐adhesive substratum. Rho A was activated in B16F10 aggregates throughout their time in culture, whereas it was not in Swiss 3T3 aggregates. An absence of apoptotic activity was correlated with the proliferation of B16F10 cells in aggregates: caspase 3 was significantly activated only after 3 days in culture on polyHEMA. FAK and Akt were transiently activated, and their inactivation was correlated with the induction of apoptosis. ERK1/2 were activated throughout the 3D culture. No survival protein was activated in Swiss 3T3 aggregates. Data obtained from cells in 3D culture suggest that B16F10 cells are resistant to anoikis through the activation of the FAK and Akt signalling pathways.  相似文献   

17.
Snake venom metalloproteinases (SVMPs) are structurally and functionally similar to matrix metalloproteinases (MMPs). We have previously demonstrated that a SVMP, named gaminelysin, can induce endothelial cell apoptosis [Biochem J. 357 (2001) 719]. In this study, the action mechanism of graminelysin in causing endothelial cell apoptosis was further investigated. We showed that the apoptosis was initiated with cell shape change and extracellular matrix degradation and occurred before cell detachment. Cleaved forms of MMP-2 might act in concert with graminelysin to cause apoptosis. During apoptosis, adherens junctions, including VE-cadherin and beta- and gamma-catenin were cleaved and alpha-catenin was decreased. VE-cadherin and beta-catenin at cell periphery were decreased and the discontinuity in alignment was found as observed with immunofluorescence microscopy. This was accompanied with a diffuse beta-catenin staining in the cytoplasm and a decreased F-actin stress fibers in some rounded cells. The decrease of VE-cadherin and beta-catenin in Triton-insoluble fractions confirmed that the association of adherens junctions with actin cytoskeleton was altered during apoptosis. Graminelysin-induced cleavage in adherens junctions was paralleled with the changes in paracellular permeability. We also detected the activation of caspase-3 and the decrease of Bcl-2/Bax ratio during apoptosis. However, caspase inhibitors showed differential effects in blocking the cleavage of PARP, adherens junctions, and DNA fragmentation. Taken together, the data presented suggest that metalloproteinase can control cell fates via the degradation of matrix proteins, the change of cell shape, and the cleavage of adherens junctions.  相似文献   

18.
A hydrolytically stable mimetic of the tumour antigen GM3 lactone is used to decorate multivalent scaffolds. Two of them positively interfere on melanoma cell adhesion, migration and resistance to apoptosis (anoikis). Notably, their ability to hamper melanoma-cells adhesion and reduce the metastatic potential is enhanced when the two scaffolds, presenting a different shape, are used in combination.  相似文献   

19.

Background

Resistance to anoikis, apoptosis triggered by a loss of cellular adhesion to the underlying extracellular matrix, is a hallmark of metastatic cancer. Previously we have shown re-establishment of CXCL12 expression in colorectal carcinoma cells inhibits metastasis by enhancing anoikis sensitivity. The objective of these studies was to define the signaling mechanisms regulating CXCL12-mediated anoikis.

Methodology/Principal Findings

Adhesion, examined by crystal violet staining, immunofluorescence microscopy, and immunoblot analysis indicated decreased focal adhesion signaling corresponding with loss of adhesion in cells constitutively simulated by CXCL12. Loss of adhesion was inhibited by pertussis toxin treatment, indicating CXCL12 regulating anoikis through Gαi-protein coupled receptors. Non-adherent HCT116 and HT29 colorectal carcinoma cells expressing CXCL12 exhibited enhanced anoikis sensitivity by propidium iodide staining, caspase activity assays, and immunoblot compared to GFP control cells. CXCL12 producing carcinomas cultured on poly-HEMA displayed heightened Bim and loss of Mcl-1 and Bcl-2 preceding cytochrome c release, and caspase-9 activation. RNAi knockdown of Bim reversed anoikis sensitivity of CXCL12-expressing cells and fostered increased soft-agar foci formation and hepatic tumors in an orthotopic mouse model of metastasis.

Conclusions/Significance

These data indicate CXCL12 provides a barrier to metastasis by increasing anoikis via activation of a Bim-mediated intrinsic apoptotic pathway. These results underscore the importance of retaining CXCL12 expression to sensitize colorectal carcinomas to anoikis and minimize tumor progression.  相似文献   

20.
A growing body of evidence suggests that reactive oxygen species are critical components of cell signaling pathways, in particular regulating protein phosphorylation events. Here, we show that oxidative stress in response to hydrogen peroxide treatment of human epithelial cells induces robust tyrosine phosphorylation on multiple proteins. Using an anti-phosphotyrosine purification and liquid chromatography-tandem mass spectrometry approach, we have identified many of these H2O2-induced tyrosine-phosphorylated proteins. Importantly, we show that epidermal growth factor receptor (EGFR) and Src are the primary upstream kinases mediating these events through their redox activation. The finding that many of the identified proteins have functions in cell adhesion, cell-cell junctions, and the actin cytoskeleton prompted us to examine stress-induced changes in adhesion. Immunofluorescence analysis showed that H2O2 alters cell adhesion structures and the actin cytoskeleton causing loss of adhesion and apoptosis. Remarkably, these cellular changes could be attenuated by inhibition of EGFR and Src, identifying these kinases as targets to block oxidative damage. In summary, our data demonstrate that EGFR and Src together play a central role in oxidative stress-induced phosphorylation, which in turn results in loss of adhesion, morphological changes, and cell damage in epithelial cells. These data also provide a general model for redox signaling in other cell systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号