首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
Jadwiga Bry a  Jolanta M. Dzik 《BBA》1981,638(2):250-256
(1) The relationship between phosphoenolpyruvate formation and its accumulation in kidney cortex mitochondria of rabbit was studied in the presence of glutamate as substrate. (2) In mitochondria incubated in either State 4 or under uncoupled conditions, both 1,2,3-benzenetricarboxylate and atractyloside resulted in a marked elevation of the intramitochondrial phosphoenolpyruvate accompanied by a 2–4-fold decline in production of this compound. The same effect was induced by n-butylmalonate in uncoupled mitochondria, while both phosphoenolpyruvate efflux and its production were inhibited to a smaller extent in mitochondria incubated with 1,2,3-benzenetricarboxylate in State 3. (3) Citrate, malate or 2-phosphoglycerate caused a fast displacement of phosphoenolpyruvate from atractyloside-inhibited mitochondria to the reaction medium. In contrast, on the addition of ATP to mitochondria incubated with 1,2,3-benzenetricarboxylate, the rate of phosphoenolpyruvate efflux was lower than that induced by either malate or citrate. (4) Despite the presence of both 1,2,3-benzenetricarboxylate and atractyloside, arsenite and rotenone plus antimycin resulted in a leakage of phosphoenolpyruvate from the mitochondria, probably via a carrier-independent mechanism. (5) Based on the present results it seems that depending on the metabolic condition, the tricarboxylate carrier and the adenine nucleotide translocase are functioning to different extents in the efflux of phosphoenolpyruvate from rabbit renal mitochondria to the surrounding medium.  相似文献   

2.
Previous work from our laboratory (Hod, Y., Utter, M. F., and Hanson, R. W. (1982) J. Biol. Chem. 257, 13787-13794) has demonstrated that chicken kidney contains both mitochondrial and cytosolic forms of phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) and that the two forms are distinct proteins. Using poly(A+) RNA from chicken kidney, a double-stranded cDNA library was constructed. DNA clones containing sequences complementary to the mRNA for the cytosolic form of phosphoenolpyruvate carboxykinase were initially identified by colony hybridization with 32P-labeled cDNA transcribed from an RNA fraction enriched for the enzyme mRNA. The identity of plasmids containing phosphoenolpyruvate carboxykinase cDNA was confirmed by hybrid-selected translation. Mature mRNA for cytosolic phosphoenolpyruvate carboxykinase of the chicken is 2.8 kilobases in length, similar to that previously noted for mRNA coding for the same enzyme in the rat. The cDNA for the chicken enzyme hybridizes with several restriction fragments of the corresponding cDNA for the rat cytosolic phosphoenolpyruvate carboxykinase, indicating conservation of nucleotide sequences during evolution. Wide spread conservation of sequence homology is also demonstrated by the hybridization of the cDNA for the rat phosphoenolpyruvate carboxykinase with a 2.8-kilobase RNA from the livers of a variety of vertebrates including amphibian, avian, and primate species. Specific mRNA coding for the cytosolic form of phosphoenolpyruvate carboxykinase was present in chicken kidney but absent from the liver, even in animals starved for 48 h. However, the administration of cAMP to normal fed chickens caused a rapid induction of phosphoenolpyruvate carboxykinase mRNA. These findings suggest that the gene for the cytosolic enzyme in chicken liver can be expressed if the proper hormonal stimuli are present.  相似文献   

3.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12–14-day-old plants was calculated to be 330 μmol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22°C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   

4.
The most common type of genetic relationship between cytosolic and mitochondrial isoenzymes will probably be found to be divergent evolution from a common ancestral form. This is firmly established for the aspartate aminotransferases and less directly so in other cases. The two isoenzymes of aspartate aminotransferase have evolved at roughly equal rates at the level of total amino acid sequence but certain limited surface regions of the mitochondrial form have been much more highly conserved than corresponding regions in the cytosolic protein; these regions probably play a role in topogenesis of the mitochondrial isoenzyme. It is of interest that nearly all mitochondrial proteins are initially synthesised as precursors of molecular weight greater than the mature forms. In the case of aspartate aminotransferase, and possibly of other such isoenzymes, the N-terminus of the mature protein is nearly coincident with that of the cytosolic isoenzyme. Hence during evolution either the gene for the mitochondrial isoenzyme has gained an extra coding region for this N-terminal extension or, less likely, the structural gene for the cytosolic form has suffered a sizeable terminal deletion. Cytosolic and mitochondrial superoxide dismutases have not shared a common ancestral form as shown by the fact that their primary structures are completely unrelated. On the other hand, the mitochondrial and prokaryotic enzymes are clearly related. There is now, however, evidence to suggest that some prokaryotes possess a copper/zinc enzyme related to the eukaryotic cytosolic form. Hence the possibility arises that primitive prokaryotes possessed both proteins. The copper/zinc superoxide dismutase has been retained in the cytosol of eukaryotic cells and a few bacterial species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When rat liver cytosolic P-enolpyruvate carboxykinase is purified, its activity is no longer enhanced by incubation with 30 muM Fe2+. Ferrous ion stimulation of the purified enzyme is restored by the addition of rat liver cytosol. The agent responsible is a cytosolic protein, named P-enolpyruvate carboxykinase ferroactivator, that was readily separated from the enzyme during purification of the latter. A quantitative assay for P-enolpyruvate carboxykinase ferroactivator is described. Subcellular fractionation of livers from fasted rats shows that 98% of the combined mitochondrial and cytosolic P-enolpyruvate carboxykinase ferroactivator activity resides in the cytosol. Fasting does not produce significant change in this cytosolic activity when compared to that of fed animals. Examination of various tissue homogenates shows that the ferroactivator is found in liver, kidney, erythrocytes, adipose tissue, and brain. No activity was detected in blood serum or skeletal muscle. The ability to enhance the activity of purified rat liver cytosolic P-enolpyruvate carboxykinase in the presence of Fe2+ is not species specific. P-enolpyruvate carboxykinase ferroactivator may have an important function in regulating enzyme activity in vivo.  相似文献   

6.
1. The cytosolic aspartate aminotransferase was purified from human liver. 2. The isoenzyme contains four cysteine residues, only one of which reacts with 5,5'-dithiobis-(2-nitrobenzoic acid) in the absence of denaturing agents. 3. The amino acid sequence of the isoenzyme is reported, as determined from peptides produced by digestion with trypsin and with CNBr, and from sub-digestion of some of these peptides with Staphylococcus aureus V8 proteinase. 4. The isoenzyme shares 48% identity of amino acid sequence with the mitochondrial form from human heart. 5. Comparisons of the amino acid sequences of all known mammalian cytosolic aspartate aminotransferases and of the same set of mitochondrial isoenzymes are reported. The results indicate that the cytosolic isoenzymes have evolved at about 1.3 times the rate of the mitochondrial forms. 6. The time elapsed since the cytosolic and mitochondrial isoenzymes diverged from a common ancestral protein is estimated to be 860 x 10(6) years. 7. Experimental details and confirmatory data for the results presented here are given in a supplementary paper that has been deposited as a Supplementary Publication SUP 50158 (25 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1990) 265, 5.  相似文献   

7.
8.
1. Starvation increases the activity of cytosolic P-enolpyruvate carboxkinase in rabbit liver some 4-5 fold but does not alter the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase or glucose-6-phosphatase.2. Alloxan-induced diabetes increases the activities of cytosolic P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase approx. 6-, 2- and 2-fold, respectively. Again the activity of mitochondrial P-enolpyruvate carboxykinase is not altered. 3. Administration of mannoheptulose rapidly increases blood glucose levels and also causes a significant increase in cytosolic P-enolpyruvate carboyxkinase activity within 4 h. The activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase are not affected. 4. Administration of hydrocortisone also increases blood glucose levels and the activities of cytosolic P-enolpyruvate carboxykinase and glucose-6-phosphatase are significantly increased within 12h. Again, mitochondrial P-enolpyruvate carboxykinase and fructose-1,6-diphosphatase activities remain unaffected. 5. The observations that (A) the activity of cytosolic P-enolpyruvate carboxykinase responds to more situations conducive to gluconeogenesis than do the activities of mitochondrial P-enolpyruvate carboxykinase, fructose-1,6-diphosphatase and glucose-6-phosphatase, and (B) cytosolic P-enolpyruvate carboxykinase activity is rapidly adaptive under appropriate circumstances, suggests that this particular enzyme's activity plays an important role in the regulation of gluconeogenesis in rabbits.  相似文献   

9.
The distribution of alanine aminotransferase isozymes in several tissues from several species has been studied. In glycolytic tissues, such as skeletal and cardiac muscle, cytosolic alanine aminotransferase was the predominant form. In gluconeogenic tissues, such as liver and kidney, the concentration of the cytosolic alanine aminotransferase was much more variable; its presence, however, may be correlated with the presence of phosphoenolpyruvate carboxykinase in the same compartment. The particulate enzyme was found associated only with the matrix of the mitochondria. It was present only in those gluconeogenic tissues that can utilize alanine for glucose production, e.g. rat liver and pig liver and kidney; it was absent from rat kidney which cannot convert alanine to glucose. These observations, together with the kinetic parameters of the two isozymes, suggest that in vivo, mitochondrial alanine aminotransferase is involved in the conversion of alanine to pyruvate, while the cytosolic isoenzyme is mainly involved in the formation of alanine from pyruvate.  相似文献   

10.
The genes of mitochondrial and cytosolic aspartate aminotransferase of chicken were cloned and sequenced. In both genes nine exons encode the mature enzyme. The additional exon for the N-terminal presequence that directs mitochondrial aspartate aminotransferase into the mitochondria is separated by the largest intron from the rest of the gene. A comparison of the two genes of chicken with the aspartate aminotransferase genes of mouse [Tsuzuki, T., Obaru, K., Setoyama, C. & Shimada, K. (1987) J. Mol. Biol. 198, 21-31; Obaru, K., Tsuzuki, T., Setoyama, C. & Shimada, K. (1988) J. Mol. Biol. 200, 13-22] reveals closely similar structures: in the gene of both the mitochondrial and the cytosolic isoenzyme all but one intron positions are conserved in the two species and five introns out of nine are placed at the same positions in all four genes indicating that the introns were in place before the genes of the two isoenzymes diverged. The variant consensus sequence (T/C)11 T(C/T)AG at the 3' splice site of the introns of the genes for nuclear-encoded mitochondrial proteins, which had been deduced from a total of 34 introns [Jureti?, N., Jaussi, R., Mattes, U. & Christen, P. (1987) Nucleic Acids Res. 15, 10,083-10,086], was confirmed by including an additional 22 introns into the comparison. The position -4 at the 3' splice site is occupied by base T in 43% of the total 56 introns and appears to be subject to a special evolutionary constraint in this particular group of genes. The following course of evolution of the aspartate aminotransferase genes is proposed. Originating from a common ancestor, the genes of the two isoenzymes intermediarily evolved in separate lineages, i.e. the ancestor eukaryotic and ancestor endosymbiontic cells. When endosymbiosis was established, part of the endosymbiontic genome, including the aspartate aminotransferase gene, was transferred to the nucleus. This process probably led to the conservation of certain splicing factors specific for nuclear-encoded mitochondrial proteins. The presequence for the mitochondrial isoenzyme was acquired by DNA rearrangement. In the eukaryotic lineage, the mitochondrial isoenzyme evolved more slowly than its cytosolic counterpart.  相似文献   

11.
The effect of pyridoxal depletion and supplementation on the intracellular level of mitochondrial and cytosolic aspartate aminotransferase in cultured chicken embryo fibroblasts was examined. No apoenzyme was detected in cells grown in the presence of pyridoxal, and the specific activity of total enzyme did not vary profoundly from primary to quaternary cultures. Under pyridoxal depletion, up to 40% apoenzyme was found in tertiary cultures which was entirely due to the mitochondrial isoenzyme. Cytosolic apoenzyme was never detected. Total aspartate aminotransferase relative to total protein was increased 2-fold in secondary cultures; only the mitochondrial isoenzyme contributed to the increased specific activity. The cytosolic isoenzyme decreased steadily and was below the limit of detection in quaternary cultures. The changes are attributed to an increased and decreased synthesis of mitochondrial and cytosolic isoenzyme, respectively. No induction of either isoenzyme was observed after incubating the cells with different hormones and substrates. In secondary cultures, no degradation of mitochondrial isoenzyme could be detected under pyridoxal deficiency or supplementation during 4.4 days, an interpassage duration. The cytosolic aspartate aminotransferase was degraded initially with an apparent half-life of approximately 0.9 day under both sets of conditions. The pronounced stability of mitochondrial aspartate aminotransferase, even though one-third of it was present as apoenzyme, excludes the formation of the apoform to be the rate-limiting step in its degradation. The present results show that pyridoxal affects the synthesis of mitochondrial and cytosolic aspartate aminotransferase, but differently.  相似文献   

12.
The primary structure of mitochondrial aspartate aminotransferase from chicken is reported. The enzyme is a dimer of identical subunits. Each subunit contains 401 amino acid residues; the calculated subunit molecular weight of the apoform is 44,866. The degree of sequence identity with the homologous cytosolic isoenzyme from chicken is 46%. A comparison of the primary structures of the mitochondrial and the cytosolic isoenzyme from pig and chicken shows that 40% of all residues are invariant. The degree of interspecies sequence identity both of the mitochondrial and the cytosolic isoenzyme from chicken and pig (86% and 83%, respectively) markedly exceeds that of the intraspecies identity between mitochondrial and cytosolic aspartate aminotransferase in chicken (46%) or in pig (48%). Based on these values, the duplication of the aspartate aminotransferase ancestral gene is estimated to have occurred approximately 1000 million years ago, i.e. at the time of the emergence of eukaryotic cells. By sequence comparison it is possible to identify amino acid residues and segments of the polypeptide chain that have been conserved specifically in the mitochondrial isoenzyme during phylogenetic evolution. These segments comprise about a third of the total polypeptide chain and appear to cluster in a certain surface region. The cluster carries an excess of positively charged residues which exceeds the overall charge difference between the cytosolic (pI approximately 6) and the mitochondrial isoenzyme (pI approximately 9).  相似文献   

13.
The yeast Saccharomyces cerevisiae contains three alcohol dehydrogenase isoenzymes (ADHI-ADHIII), two in the cytoplasm (ADHI and ADHII) and one in the mitochondrion (ADHIII). Sequence comparison of the corresponding nuclear genes showed that these three proteins are 80-90% identical except for a 27-amino acid extension at the amino terminus of ADHIII. Here we demonstrate that ADHIII is located inside the mitochondrial inner membrane. We also show, using gene fusions, that the amino terminus of ADHIII contains the information for targeting the protein to and transporting it into the mitochondrion. The mitochondrial isoenzyme ADHIII can be converted into a cytosolic protein by deleting its first 28 amino acids. Conversely, the cytoplasmic isoenzyme ADHII can be converted into a mitochondrial isoenzyme by replacing its first 21 amino acids with the first 48 amino acids of ADHIII. We conclude that ADHII is a cytosolic protein because it lacks an amino-terminal targeting sequence for the mitochondrion and that ADHIII is a mitochondrial protein because it contains a mitochondrial targeting sequence.  相似文献   

14.
The malate dehydrogenase activity in the cytosolic fraction isolated from chicken hepatocytes is resolved by DEAE-Sephacel chromatography in three active, electrophoretically distinct, species obtained in homogeneous form by affinity chromatography on 5'-AMP-Sepharose and Blue-Sepharose. Two of those species, according to the results obtained, might represent different conformational isomers of the enzyme molecule. Their purified preparations show identical amino-acid compositions and physico-chemical properties very similar to those of the cytosolic isoenzyme of other sources. The third one corresponds to a slight contamination of the mitochondrial isoenzyme.  相似文献   

15.
Various proteases (proteinase K, subtilisin, trypsin and chymotrypsin) were used to study the selective inactivation of the aspartate aminotransferase (EC 2.6.1.1) isoenzymes of grey mullet (Mugil auratus Risso; Osteichthyes). The cytosolic isoenzyme was significantly inactivated by proteinase K, subtilisin and chymotrypsin, while the mitochondrial isoenzyme was sensitive only to proteinase K and to high doses of trypsin. Further identification of the aspartate aminotransferase isoenzymes was based on their discrete sensitivity toward chymotrypsin. Chymotrypsin (1 mg/ml) successfully inhibited purified cytosolic aspartate aminotransferase as well as cytosolic isoenzyme from plasma, whereas the mitochondrial form persisted unaffected. Similar results were obtained when examining liver and red muscle homogenates. This method revealed that the increased total activity of aspartate aminotransferase in fish plasma with induced acute liver injury, was partially a result of the mitochondrial isoenzyme leakage from damaged tissue.  相似文献   

16.
Aspartate aminotransferase (AAT), alanine aminotransferase (ALAT), malic enzyme (ME), malate dehydrogenase (MDH), pyruvate kinase (PK), and phosphoenolpyruvate carboxykinase (PEPCK) activities in cytosolic and mitochondrial fractions of gill tissue from Modiolus demissus (ribbed mussel), Mytilus edulis (sea mussel), Crassostrea virginica (oyster) and Mercenaria mercenaria (quahog) were determined using enzyme assay and starch gel electrophoresis combined with subcellular fractionation. AAT showed distinct mitochondrial and cytosolic isozymes in gills of all these animals. Although ALAT showed distinct mitochondrial and cytosolic isozymes in the gills of oysters, sea mussels and quahogs, only the mitochondrial ALAT was evident in ribbed mussel gill tissue. PK and PEPCK were cytosolic in all these preparations. ME was found only in the mitochondrial fraction of ribbed mussel and quahog gill tissue whereas sea mussel gills showed distinct cytosolic and mitochondrial ME isozymes. With oyster gills, the "cytosolic ME" was electrophoretically identical to the mitochondrial ME indicating that in vivo, the ME is probably mitochondrial. MDH showed distinct cytosolic and mitochondrial isozymes in all bivalve gills tested.  相似文献   

17.
18.
The cytosolic form of phosphoenolpyruvate carboxykinase (PCK1) plays a regulatory role in gluconeogenesis and glyceroneogenesis. The role of the mitochondrial isoform (PCK2) remains unclear. We report the partial purification and kinetic and functional characterization of human PCK2. Kinetic properties of the enzyme are very similar to those of the cytosolic enzyme. PCK2 has an absolute requirement for Mn2+ ions for activity; Mg2+ ions reduce the Km for Mn2+ by about 60 fold. Its specificity constant is 100 fold larger for oxaloacetate than for phosphoenolpyruvate suggesting that oxaloacetate phosphorylation is the favored reaction in vivo. The enzyme possesses weak pyruvate kinase-like activity (kcat=2.7 s?1). When overexpressed in HEK293T cells it enhances strongly glucose and lipid production showing that it can play, as the cytosolic isoenzyme, an active role in glyceroneogenesis and gluconeogenesis.  相似文献   

19.
Sequence homology and structure predictions of the creatine kinase isoenzymes   总被引:13,自引:0,他引:13  
Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidino kinases revealed high homology and were used to determine the evolutionary relationships of the various guamidino kinases. A CK framework is defined, consisting of the most conserved sequence blocks, and diagnostic boxes are identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure as well as of aromatic amino acids that are involved in catalysis.Abbreviations GuaK guanidino kinase - CK creatine kinase - B-and M-CK brain and muscle cytosolic CK isoenzyme - Mi-CK mitochondrial CK isoenzyme - ArgK arginine kinase - Cr creatine - PCr phosphorylcreatine - PArg phosphorylarginine  相似文献   

20.
Phosphoenolpyruvate carboxykinase of chicken liver cytosol was purified to homogeneity by procedures including affinity chromatography with GTP as a ligand. The purified enzyme showed a molecular weight of 68,000 on gel electrophoresis in the presence of dodecyl sulfate. Comparative studies on this enzyme and its isozyme purified from chicken liver mitochondria were performed. As regards amino acid composition, the cytosolic enzyme was quite different from the mitochondrial enzyme, but was rather similar to rat liver cytosolic phosphoenolpyruvate carboxykinase. Specific activities of the cytosolic enzyme were 30-100% higher than those of the mitochondrial enzyme for oxaloacetate-CO2 exchange, oxaloacetate decarboxylation, and phosphoenolpyruvate carboxylation reactions, though the relative rates of the activities were similar, decreasing in the order given. Apparent Michaelis constants for oxaloacetate in the oxaloacetate decarboxylation reaction were 11.6 and 17.9 microM for the cytosolic and the mitochondrial enzyme, respectively, but the values for GTP, GDP, phosphoenolpyruvate, and CO2 in the oxaloacetate decarboxylation and phosphoenolpyruvate carboxylation reactions were 1.3-2.2 times higher for the cytosolic enzyme than for the mitochondrial enzyme. Thus, the fundamental catalytic properties of the chicken liver phosphoenolpyruvate carboxykinase isozymes were rather similar, despite the marked difference in amino acid compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号