首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Mammalian cells transformed by DNA and RNA tumor viruses are shown to display consistently different growth properties. All SV40, adenovirus type 7 and polyoma virus (DNA viruses) transformed cells propagated to high densities. The same cells transformed instead by RNA viruses: MSV strain Kirsten (MSV-Ki) or MSV strain Maloney (MSV-M) grew to densities which were consistently lower than DNA virus-transformed cells but greater than that of untransformed cells. The capacity to synthesize DNA at increasing densities also differentiated the RNA and DNA virus-transformed cells. As growing cultures of untransformed cells neared saturation density, the fraction of cells synthesizing DNA was minimal. The RNA virus-transformed cells were also contact-inhibited but at a significantly higher density. In contrast the DNA virus-transformed cells propagated to still greater densities and continued DNA synthesis at a high rate even at very high densities. Therefore the DNA virus-transformed cells truly are not contact inhibited. It is suggested that the capacity to continue DNA synthesis at high densities explains the attainment of much greater densities by DNA virus-transformed cells. There were no clear-cut differences in the ability to form colonies in agar, although a few of the RNA virus-transformed lines could not be propagated in semi-solid medium. These results may be explained as a persistence of the capacity of DNA tumor viruses to stimulate host cell DNA synthesis.  相似文献   

2.
U L?nn  S L?nn 《Biochemistry》1988,27(2):566-570
We have looked for the presence of single-stranded DNA in human melanoma cells. Single-stranded DNA was observed by lysis of cells in dilute alkali (to partly denature the DNA) followed by CsCl gradient centrifugations. In normally growing cells we did not observe single-stranded DNA whereas large amounts were present in cells treated with aphidicolin (an inhibitor of DNA polymerase alpha). The single-stranded DNA is much larger (greater than 20 kb) than Okazaki fragments. When the cells were washed free of aphidicolin, the single-stranded DNA was converted to high molecular weight DNA. Furthermore, when DNA synthesis is recovering after drug treatment, the single-stranded DNA disappears. The single-stranded DNA represents a transient step during the maturation of newly synthesized DNA.  相似文献   

3.
Neocarzinostatin inhibits DNA synthesis in HeLa S3 cells and induces the rapid limited breakage of cellular DNA. The fragmentation of cellular DNA appears to precede the inhibition of DNA synthesis. Cells treated with drug at 37 degrees C for 10 min and then washed free of drug show similar levels of inhibition of DNA synthesis or cell growth, or of strand-scission of DNA as when cells were not washed. If cells are preincubated with neocarzinostatin at 0 degrees C before washing, the subsequent incubation of 37 degrees C results in no inhibition of DNA synthesis or cell growth, or cutting of DNA. Isolated nuclei or cell lysates derived from neocarzinostatin-treated HeLa S3 cells are inhibited in DNA synthesis but this can be overcome in cell lysates by adding activated DNA. A cytoplasmic fraction from drug-treated cells can stimulate DNA synthesis by nuclei isolated from untreated cells, whereas nuclei from drug-treated cells are not stimulated by the cytoplasmic fraction from untreated cells. By contrast, neocarzinostatin does not inhibit DNA synthesis when incubated with isolated nuclei, but it can be shown that under these conditions the DNA is already degraded and is not further fragmented by the drug. These data suggest that the drug's ability to induce breakage of cellular DNA in HeLa S3 cells is an essential aspect of its inhibition of DNA replication and may be responsible for the cytotoxic and growth-inhibiting actions of neocarzinostatin.  相似文献   

4.
Deoxyribonucleic acid (DNA) transfer from (3)H-thymine-labeled Hfr cells has been measured by determining the amount of radioactivity remaining after selective lysis of the donor cells in the mating mixture. DNA transfer was less effectively reduced by ultraviolet irradiation of excision-defective Hfr cells than was the yield of recombinants. The buoyant density of DNA transferred from unirradiated and irradiated Hfr cells was equivalent to that of double-stranded DNA. Mating-dependent DNA synthesis in the recipient has been measured by mating Hfr cells deficient in thymidine kinase with irradiated thymine-requiring F(-) cells in the presence of (3)H-thymine. The extent of such DNA synthesis approximated the amount of DNA transferred from unirradiated donors. Neither DNA transfer nor mating-dependent DNA synthesis could be reliably measured when both parents were irradiated. It is proposed that transferred Hfr DNA is replicated in the recipient and that this replication still occurs when the Hfr DNA contains dimers.  相似文献   

5.
A large proportion of DNA synthesized in vitro by human lymphocytes stimulated with plant mitogens or specific antigens is selectively excreted from the cells. To determine if DNA excretion differs among various types of lymphocytes, we examined purified human lymphocyte subpopulations for DNA synthesis and excretion in response to stimulation by L-PHA. The relative proportion of newly synthesized DNA that is excreted by unseparated mononuclear cells, macrophage-depleted cells, T, and B lymphocytes is identical despite great differences in the magnitude of their responses. Low levels of both DNA synthesis and excretion by macrophage-depleted cells and B cells can be increased by reconstitution with macrophages and T cells, respectively. These data indicate that DNA exretion is a general property of lymphocytes stimulated to undergo DNA synthesis by plant mitogens.  相似文献   

6.
E Essich  S E Stevens  Jr    R D Porter 《Journal of bacteriology》1990,172(4):1916-1922
Chromosomal transformation of Agmenellum quadruplicatum PR-6 (= Synechococcus sp. strain 7002) was characterized for phenotypic expression, for exposure time to DNA, and for dependence on DNA concentration with regard to Rifr donor DNA. Exponentially growing cells of PR-6 were competent for chromosomal transformation. Competence decreased in cells in the stationary phase of growth or in cells deprived of a nitrogen source. Dark incubation of cells before exposure to donor DNA also decreased competence. Homologous Rifr and Strr DNA and heterologous Escherichia coli W3110 DNA were used in DNA-DNA competition studies, which clearly showed that DNA binding by PR-6 was nonspecific. DNA binding and uptake by PR-6 exhibited single-hit kinetics. Single-stranded DNA failed to transform competent cells of PR-6, and DNA eclipse was not observed, suggesting that double-stranded DNA was the substrate for the binding and uptake reactions during the transformation of PR-6. A significant improvement in transformation frequency was achieved by increasing the nitrate content of the culture medium and by lowering the temperature at which cells were exposed to donor DNA from 39 degrees C (the optimal temperature for growth) to 30 degrees C.  相似文献   

7.
Macromolecular Content of Inclusions Produced by a Canine Adenovirus   总被引:3,自引:1,他引:2  
Early inclusions induced by a canine adenovirus in a canine cell line, appearing before the formation of infectious virus particles, were purified by differential centrifugation in sucrose followed by CsCl density gradient centrifugation. Chemical analysis of these inclusions revealed that they contained deoxyribonucleic acid (DNA), ribonucleic acid, and protein. On the basis of density gradient centrifugation, the DNA extracted from the inclusions was found to be viral DNA. Electron microscope autoradiography showed that these inclusions were the sites of DNA synthesis. In addition, association of DNA polymerase activity with the inclusions was detected by incorporation of radioactivity from (3)H-thymidine triphosphate into a DNA product. The in vitro product of the enzyme had a density equal to that of viral DNA rather than host DNA. The level of DNA polymerase activity in exponentially growing infected and uninfected whole cells was similar, but in cells in stationary phase the enzyme activity of infected cells was twice that in noninfected cells. Furthermore, nuclei isolated from infected cells showed a fourfold increase in DNA polymerase activity over the noninfected cells.  相似文献   

8.
A Bolden  J Aucker    A Weissbach 《Journal of virology》1975,16(6):1584-1592
Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha.  相似文献   

9.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

10.
Variants of mouse leukaemia L1210 cells have been isolated in which cytotoxicity to dimethyl sulphate is not fully potentiated by ADP-ribosyl transferase inhibitor 3-aminobenzamide, as occurs in normal L1210 cells. These variants were selected after mutagenesis by growing the cells in dimethyl sulphate and 3-aminobenzamide. The characterisation of one of these variants is described. Variant 3 cells repair low doses of DNA damage in the presence of ADP-ribosyl transferase inhibitors. The Vmax of the ADP-ribosyl transferase enzyme in these cells is only increased 35% compared to normal wild-type L1210 cells. The basal DNA ligase I activity is increased 66% above wild-type whereas DNA ligase II activity appears to be unchanged. The most striking observation, however, is that the DNA ligase II activity is not increased after dimethyl sulphate treatment as occurs in wild-type L1210 cells. It seems that by increasing DNA ligase I levels these cells can survive DNA damage in the presence of 3-aminobenzamide. This variant (mutant) provides genetic evidence for our previously published hypothesis that (ADP-ribose)n biosynthesis is required for efficient DNA repair after DNA damage by monofunctional alkylating agents, because ADP-ribosyl transferase activity regulates DNA ligase activity. This variant is the first mammalian cell reported in which DNA ligase activity is altered, as far as we are aware. In yeast, a DNA ligase mutant has a cell division cycle (cdc) phenotype. Presumably, DNA ligase is essential for DNA synthesis, repair and recombination. The present variant provides further evidence that in mammalian cells, DNA ligase II activity is related to ADP-ribosyl transferase activity.  相似文献   

11.
Exposure of MiaPaCa cells to 1-beta-D-arabinosylcytosine (ara-C) resulted in an increase in DNA ligase levels up to threefold compared to that in the untreated control cells, despite significant growth inhibition. Increased levels of DNA ligase I protein appear to correlate with the appearance of increased mRNA levels. The [(3)H]thymidine incorporation experiment and the biochemical assay of total polymerase activity revealed that an increase in DNA ligase I levels after treatment with ara-C was not accompanied by an increase of DNA synthesis or an increased presence of DNA polymerase activity inside cells. When cells resumed DNA synthesis after drug treatment, DNA ligase I levels began to drop, indicating that increased DNA ligase I is not required for DNA synthesis. An increase in DNA ligase I was also observed in cells treated with aphidicolin, another inhibitor of DNA synthesis that inhibits DNA polymerases without incorporating itself into DNA, indicating that an increase in DNA ligase I levels could be caused by the arrest of DNA replication by these agents. Interestingly, caffeine, which is a well-known inhibitor of DNA damage checkpoint kinases, abrogated the increase in DNA ligase I in MiaPaCa cells treated with ara-C and aphidicolin, suggesting that caffeine-sensitive kinases might be important mediators in the pathway leading to the increase in DNA ligase I levels in response to anticancer drugs, including ara-C and aphidicolin. We propose that ara-C and aphidicolin induce damage to the DNA strand by arresting DNA replication forks and subsequently increase DNA ligase I levels to facilitate repair of DNA damage.  相似文献   

12.
The effects of polyamines on DNA synthesis in vitro using various subcellular DNA polymerase fractions from normal and tumour-bearing rat livers, and tumour cells were investigated. When nuclear and mitochondrial DNA polymerase fractions were used, DNA synthesis on activated DNA was increased 3.5-8-fold by the addition of 20 mM putrescine or cadaverine. However, DNA synthesis was not stimulated by the addition of spermidine or spermine at any concentration tested. In contrast, DNA synthesis using the cytoplasmic DNA polymerase fraction was not stimulated at various concentrations of any of the four polyamines tested. The stimulatory effects of putrescine and cadaverine were absent when nuclear fractions from tumour-bearing rat liver or from tumour cells were used. In addition, in vitro DNA synthesis was not stimulated by 20 mM putrescine or cadaverine when nuclear extracts from the livers of rats administered putrescine subcutaneously were used. The specific activities of DNA polymerases extracted from tumour cells and tumour-bearing rat liver were already fully stimulated. These results suggest that DNA polymerases in tumour cells and tumour-bearing liver cells are stimulated by trapped putrescine produced in tumour cells and are thus no longer activated by exogenous putrescine.  相似文献   

13.
A temperature-sensitive mutant defective in DNA replication, tsFT848, was isolated from the mouse mammary carcinoma cell line FM3A. In mutant cells, the DNA-dependent ATPase activity of DNA helicase B, which is a major DNA-dependent ATPase in wild-type cells, decreased at the nonpermissive temperature of 39 degrees C. DNA synthesis in tsFT848 cells at the nonpermissive temperature was analyzed in detail. DNA synthesis measured by incorporation of [3H]thymidine decreased to about 50% and less than 10% of the initial level at 8 and 12 h, respectively. The decrease in the level of thymidine incorporation correlated with a decrease in the number of silver grains in individual nuclei but not with the number of cells with labeled nuclei. DNA fiber autoradiography revealed that the DNA chain elongation rate did not decrease even after an incubation for 10 h at 39 degrees C, suggesting that initiation of DNA replication at the origin of replicons is impaired in the mutant cells. The decrease in DNA-synthesizing ability coincided with a decrease in the level of the DNA-dependent ATPase activity of DNA helicase B. Partially purified DNA helicase B from tsFT848 cells was more heat sensitive than that from wild-type cells. Inactivation of DNA-dependent ATPase activity of DNA helicase B from mutant cells was considerably reduced by adding DNA to the medium used for preincubation, indicating that the DNA helicase of mutant cells is stabilized by binding to DNA.  相似文献   

14.
The incorporation of mouse S-EAC DNA into homologous normal cells (mouse embryo secondary cultures), and into heterologous cancer cells (TC-SV40 line), with both systems having their native DNA blocked by BrUdR incorporation, was studied. 3H-TdR-DNA was inoculated with DEAE-D to protect it and to potentiate its incorporation, the process being autoradiograohically controlled. The amount of incorporated DNA was radioisotopically determined, and the incorporation process was studied by analysing the fractions obtained after density gradient centrifugation separation of the inoculated cells DNA. Receptivity was greater in those cells inoculated with DEAE-D-protected DNA. The incorporation was slightly greater for cells whose DNA had been blocked by BrUdR incorporation, and for homologous with respect to heterologous cells. In those cells inoculated while the DNA blockade was incomplete, part of the inoculated DNA became incorporated into the cell genome (L-H chains). However, in the completely blocked cells it could not be determined if the incorporation occurred in a lysogenic-like or in an episomic-like form.  相似文献   

15.
Several methods to synchronize cultured cells in the cell cycle are based on temporary inhibition of DNA replication. Previously it has been reported that cells synchronized this way exhibited significant growth imbalance and unscheduled expression of cyclins A and B1. We have now observed that HL-60 cells exposed to inhibitors of DNA replication (thymidine, aphidicolin and hydroxyurea), at concentrations commonly used to synchronize cell populations, had histone H2AX phosphorylated on Ser-139. This modification of H2AX, a marker of DNA damage (induction of DNA double-strand breaks; DSBs), was most pronounced in S-phase cells, and led to their apoptosis. Thus, to a large extent, synchronization was caused by selective kill of DNA replicating cells through induction of replication stress. In fact, similar synchronization has been achieved by exposure of cells to the DNA topoisomerase I inhibitor camptothecin, a cytotoxic drug known to target S-phase cells. A large proportion of the surviving cells 'synchronized' by DNA replication inhibitors at the G1/S boundary had phosphorylated histone H2AX. Inhibitors of DNA replication, thus, not only selectively kill DNA replicating cells, induce growth imbalance and alter the machinery regulating progression through the cycle, but they also cause DNA damage involving formation of DSBs in the surviving ('synchronized') cells. The above effects should be taken into account when interpreting data obtained with the use of cells synchronized by inhibitors of DNA replication.  相似文献   

16.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

17.
The review summarizes literature data on the role of DNA breaks and DNA repair in the differentiation of pluripotent stem cells (PSC) and connective cell lineages. PSC, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), are rapidly dividing cells with highly active DNA damage response (DDR) mechanisms to ensure the stability and integrity of the DNA. In PSCs, the most common DDR mechanism is error-free homologous recombination (HR) that is primarily active during the S phase of the cell cycle, whereas in quiescent, slow-dividing or non-dividing tissue progenitors and terminally differentiated cells, errorprone non-homologous end joining (NHEJ) mechanism of the double-strand break (DSB) repair is dominating. Thus, it seems that reprogramming and differentiation induce DNA strand breaks in stem cells which itself may trigger the differentiation process. Somatic cell reprogramming to iPSCs is preceded by a transient increase of the DSBs induced presumably by the caspase-dependent DNase or reactive oxygen species. In general, pluripotent stem cells possess stronger DNA repair systems compared to differentiated cells. Nonetheless, during a prolonged cell culture propagation, DNA breaks can accumulate due to the DNA polymerase stalling. Consequently, the DNA damage might trigger the differentiation of stem cells or replicative senescence of somatic cells. The differentiation process per se is often accompanied by a decrease in the DNA repair capacity. Thus, the differentiation might be triggered by DNA breaks, alternatively, the breaks can be a consequence of the decay in the DNA repair capacity of differentiated cells.Key words: DNA breaks, DNA repair, differentiation, stem cells, connective tissue  相似文献   

18.
U L?nn  S L?nn 《Radiation research》1985,102(1):71-75
X irradiation of cells induces damage in the DNA, which can be detected as fragmentation of the DNA in alkali. To examine whether DNA polymerase alpha plays a role in the X-ray-induced fragmentation of the DNA, cells with and without functioning DNA polymerase alpha have been compared. We have used the drug aphidicolin, which is a specific inhibitor of polymerase alpha. The results show that DNA of aphidicolin-treated cells is more easily fragmented in alkali than DNA of untreated cells. This is paralleled by a lower repair replication in cells without functioning DNA polymerase alpha. Hence polymerase alpha is involved in the repair process of lesions induced by X irradiation.  相似文献   

19.
A new method for the measurement of DNA damage in individual cells treated with alkylating agents is described. The method is based on the binding of anti-DNA monoclonal antibody to DNA in situ. Monoclonal antibody F7-26 was obtained by fusion of mouse myeloma cells with spleen cells isolated from a mouse immunized with DNA treated by nitrogen mustard (HN2). Binding of antibody was evaluated by flow cytometry with indirect immunofluorescence. No binding of antibody to DNA in non-treated HeLa S3 cells was detected. Treatment of cells with HN2 or L-phenylalanine mustard induced binding of antibody to DNA in situ. Binding of antibody was observed after treating cells with doses of drugs which reduced the surviving fraction below 20%. Intensity of binding increased in proportion to the drug dose. Two-parameter analysis for the antibody binding and DNA content showed no binding of antibody to replicating DNA in control cells. In HN2-treated cells a cell subset with the lowest antibody binding was observed among cells in G1 phase. Binding of antibody to DNA in HN2-treated cells was eliminated by single-strand (ss) specific S1 nuclease. In competition assay, antibody was inhibited by thermally denatured DNA, but not by native double-stranded (ds) DNA, RNA, nucleosides and deoxyribohomopolymers. Binding of monoclonal antibody specific for the determinants expressed on ssDNA to the cells treated with alkylating agents may be attributed to local DNA denaturation. Potentiation of L-phenylalanine mustard cytotoxicity by buthionine sulfoximine or hyperthermia was accompanied by increased antibody binding to cellular DNA. Immunoreactivity of cells with the monoclonal antibody F7-26 may be a useful probe for the assessment of cell damage induced by alkylating agents, especially in heterogeneous cell populations.  相似文献   

20.
Interaction of DNA with eukaryotic cells under conditions similar to those providing DNA adsorption onto liposomes was studied. It was revealed that mouse fibroblasts (line A9) and myeloma cells bind phage and plasmid DNA in 0.3 M sucrose solution containing Mg2+-ions. Additional pretreatment of the cells by trypsin did not affect DNA adsorption efficiency. The major part of the adsorbed DNA recovered by salt treatment of the cells, but 10-15% of DNA was found to be irreversible. Up to 50% of the irreversibly bound DNA molecules retain their linear size after treatment of cells with DNAse I. Efficiencies of DNA adsorption and irreversibly binding depend on the concentration of Mg2+ in the medium. The process of DNA irreversible binding is not inhibited by drugs affecting cell metabolism. It is assumed that DNA adsorbs onto the phospholipid domains of the cell membrane, and part of the adsorbed DNA is taken up into the interior of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号