首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
T lymphocytes expressing the CD8 surface antigen block HIV replication in CD4+ peripheral blood cells from HIV-infected individuals. We report here that CD4+ cells from HIV seronegative donors, when infected in vitro with HIV, also do not replicate virus when cocultured with CD8+ T cells from HIV-infected individuals. CD8+ cells from HIV-uninfected donors did not show this effect on virus replication. HLA-restriction of the antiviral response was not observed, and virus-containing cells were not eliminated from culture. The antiviral activity was broadly cross-reactive, as CD8+ cells from individuals infected only with HIV-1 suppressed the replication of diverse strains of HIV-1 and HIV-2, as well as the simian immunodeficiency virus. This ability of CD8+ cells to control HIV replication could play an important role in the maintenance of an asymptomatic state in HIV-infected individuals.  相似文献   

4.
Poliovirus initiates infection of primate cells by binding to the poliovirus receptor, Pvr. Mouse cells do not bind poliovirus but express a Pvr homolog, Mph, that does not function as a poliovirus receptor. Previous work has shown that the first immunoglobulin-like domain of the Pvr protein contains the virus binding site. To further identify sequences of Pvr important for its interaction with poliovirus, stable cell lines expressing mutated Pvr molecules were examined for their abilities to bind virus and support virus replication. Substitution of the amino-terminal domain of Mph with that of Pvr yields a molecule that can function as a poliovirus receptor. Cells expressing this chimeric receptor have normal binding affinity for poliovirus, yet the kinetics of virus replication are delayed. Results of virus alteration assays indicate that this chimeric receptor is defective in converting native virus to 135S altered particles. This defect is not observed with cells expressing receptor recombinants that include Pvr domains 1 and 2. Because altered particles are believed to be an intermediate in poliovirus entry, these findings suggest that Pvr domains 2 and 3 participate in early stages of infection. Additional mutants were made by substituting variant Mph residues for the corresponding residues in Pvr. The results were interpreted by using a model of Pvr predicted from the known structures of other immunoglobulin-like V-type domains. Analysis of stable cell lines expressing the mutant proteins revealed that virus binding is influenced by mutations in the predicted C'-C" loop, the C" beta-strand, the C"-D loop, and the D-E loop. Mutations in homologous regions of the immunoglobulin-like CD4 molecule alter its interaction with gp120 of human immunodeficiency virus type 1. Cells expressing Pvr mutations on the predicted C" edge do not develop cytopathic effect during poliovirus infection, suggesting that poliovirus-induced cytopathic effect may be induced by the virus-receptor interaction.  相似文献   

5.
The third complementarity-determining region (CDR3) within domain 1 of the human CD4 molecule has been suggested to play a critical role in membrane fusion mediated by the interaction of CD4 with the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein. To analyze in detail the role of CDR3 and adjacent regions in the fusion process, we used cassette mutagenesis to construct a panel of 30 site-directed mutations between residues 79 and 96 of the full-length CD4 molecule. The mutant proteins were transiently expressed by using recombinant vaccinia virus vectors and were analyzed for cell surface expression, recombinant gp120-binding activity, and overall structural integrity as assessed by reactivity with a battery of anti-CD4 monoclonal antibodies. Cells expressing the CD4 mutants were assayed for their ability to form syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. Surprisingly in view of published data from others, most of the mutations had little effect on syncytium-forming activity. Normal fusion was observed in 21 mutants, including substitution of human residues 85 to 95 with the corresponding sequences from either chimpanzee, rhesus, or mouse CD4; a panel of Ser-Arg double insertions after each residue from 86 to 91; and a number of other charge, hydrophobic, and proline substitutions and insertions within this region. The nine mutants that showed impaired fusion all displayed defective gp120 binding and disruption of overall structural integrity. In further contrast with results of other workers, we observed that transformant human cell lines expressing native chimpanzee or rhesus CD4 efficiently formed syncytia when mixed with cells expressing the HIV-1 envelope glycoprotein. These data refute the conclusion that certain mutations in the CDR3 region of CD4 abolish cell fusion activity, and they suggest that a wide variety of sequences can be functionally tolerated in this region, including those from highly divergent mammalian species. Syncytium formation mediated by several of the CDR3 mutants was partially or completely resistant to inhibition by the CDR3-directed monoclonal antibody L71, suggesting that the corresponding epitope is not directly involved in the fusion process.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The progressive loss of CD4 T lymphocytes is one of the hallmarks of HIV infection. The reverse correlation observed in vivo, between plasmatic HIV levels and CD4 T lymphocyte counts, supports the concept that direct HIV-mediated cell death contributes to this depletion. Previously, we and others have demonstrated, in vitro, that interactions between membrane-expressed HIV-envelope glycoprotein complexes and CD4 ecto-molecules are critical to cell killing which occurs mainly by apoptosis. Here, by the use of a co-culture model, in which chronically HIV-1 infected cells trigger apoptosis in uninfected CD4+ target cells, we have investigated the role of different CD4 domains in HIV envelope-mediated apoptosis. Target cells were A201 lymphoblastoid cell lines expressing wild-type CD4 or mutant forms of CD4. We show that the cytoplasmic domain of CD4 was not required for apoptosis induction. In contrast, the HIV permissive cell line expressing a CD4/CD8 chimeric molecule which contains only the first 171 amino acids of CD4, appeared to be resistant to HIV-induced apoptosis; thus suggesting that the D3-D4 CD4 module plays somewhat a regulatory role. Pre-treatment of wild-type CD4 expressing target cells by the phorbol ester PMA which leads to down-regulation of CD4, completely abolished apoptosis. Interestingly, in cells expressing CD4 devoid of its cytoplasmic domain, PMA blocked partially cell death without affecting, as expected, the CD4 expression. Taken together, these results demonstrate that although CD4 expression is essential for HIV envelope induced apoptosis, the apoptotic signal could be delivered in the absence of its cytoplasmic domain. Consistent with this, we suggest that other membrane associated molecule(s) are recruited for the signalling to initiate apoptosis.  相似文献   

7.
Jurkat T-cell clones, stably expressing the human immunodeficiency virus type 1 (HIV-1) Vpr protein, exhibited an impaired susceptibility to HIV-1 infection. A marked down-modulation of surface CD4 receptors was detected in Vpr-expressing clones with respect to control cells. Likewise, a reduced CD4 expression was also observed in parental Jurkat cells infected with wild-type but not with Vpr-mutant HIV-1. Notably, Vpr-expressing clones were fully susceptible to infection with a vesicular stomatitis virus G protein-pseudotyped HIV-1 virus, indicating that a block at the level of viral entry was responsible for the inhibition of viral replication. The effect exerted by Vpr on HIV replication and CD4 expression suggests that this protein can regulate both the establishment of a productive HIV-1 infection and CD4-mediated T-cell functions.  相似文献   

8.
9.
10.
Human immunodeficiency virus type 1 Nef down-regulates surface expression of murine and human CD4 but not human CD8. We recently reported that the cytoplasmic domain of CD4 is required for its down-regulation by Nef. Using a chimeric molecule composed of the extracellular and transmembrane domains of human CD8 fused to the cytoplasmic domain of human CD4, we show here that the cytoplasmic domain of CD4 is sufficient for down-regulation by Nef. Since the cytoplasmic domain of CD4 is also the site of its association with p56lck, we used a series of CD4 mutants to determine whether the regions of the cytoplasmic domain of CD4 required for down-regulation by Nef are the same as those required for p56lck binding. Our results indicate that the portion of the cytoplasmic domain required for the down-regulation of CD4 by Nef overlaps with the binding site of p56lck, but the cysteine residues which are essential for the association of CD4 with p56lck are not required. This observation raised the possibility that Nef competes with p56lck for binding to CD4. However, under conditions which are considerably milder than those permissive for coimmunoprecipitation of CD4 and p56lck, we found no evidence for an association between Nef and CD4. While a decrease in total CD4 was observed in lysates of cells expressing Nef, the levels of p56lck were not significantly affected. Pulse-chase experiments further revealed a decrease in the half-life of CD4 in Nef-expressing cells. These results show that the decrease in surface CD4 expression induced by Nef is mediated at least in part by a decrease in the half-life of CD4 protein. These results also indicate that a large portion of p56lck is free of CD4 in T cells expressing Nef, which could have a significant effect on T-cell function.  相似文献   

11.
The cytoplasmic domains of viral glycoproteins are often involved in specific interactions with internal viral components. These interactions can concentrate glycoproteins at virus budding sites and drive efficient virus budding, or can determine virion morphology. To investigate the role of the vesicular stomatitis virus (VSV) glycoprotein (G) cytoplasmic and transmembrane domains in budding, we recovered recombinant VSVs expressing chimeric G proteins with the transmembrane and cytoplasmic domains derived from the human CD4 protein. These unrelated foreign sequences were capable of supporting efficient VSV budding. Further analysis of G protein cytoplasmic domain deletion mutants showed that a cytoplasmic domain of only 1 amino acid did not drive efficient budding, whereas 9 amino acids did. Additional studies in agreement with the CD4-chimera experiments indicated the requirement for a short cytoplasmic domain on VSV G without the requirement for a specific sequence in that domain. We propose a model for VSV budding in which a relatively non-specific interaction of a cytoplasmic domain with a pocket or groove in the viral nucleocapsid or matrix proteins generates a glycoprotein array that promotes viral budding.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) Vpu protein is a transmembrane phosphoprotein which induces rapid degradation of CD4 in the endoplasmic reticulum (ER). To identify sequences in CD4 for Vpu-induced degradation, we generated four chimeric envelope glycoproteins having the ectodomain of HIV-1 gp160, the anchor domain of CD4, and 38, 25, 24, and 18 amino acids (aa) of the CD4 cytoplasmic domain. Using the vaccinia virus-T7 RNA polymerase expression system, we analyzed the expression of chimeric proteins in the presence and absence of Vpu. In singly transfected cells, the chimeric envelope glycoproteins having 38, 24, and 18 aa of the CD4 cytoplasmic domain were endoproteolytically cleaved and biologically active in the fusion of HeLa CD4+ cells. However, one of the chimeras having 25 aa of the CD4 cytoplasmic tail was retained in the ER using the transmembrane ER retention signal and was defective in membrane fusion. Furthermore, biochemical analyses of the coexpressing cells revealed that the Vpu protein induced degradation of the envelope glycoproteins having 38, 25, and 24 aa of the CD4 cytoplasmic tail and degradation occurred in the ER. Consequently, the fusion-competent glycoproteins did not induce the formation of syncytia in HeLa CD4+ cells expressing Vpu. However, the HIV-1 gp160 and chimeric envelope glycoprotein having the membrane-proximal 18 aa of the CD4 cytoplasmic tail were stable and fusion competent in cells expressing Vpu. In addition, we examined the stability of CD4 molecules in the presence of Vpu. Coexpression analyses revealed that the Vpu protein induced degradation of CD4 whereas mutant CD4 having the membrane-proximal 18 aa of the cytoplasmic domain was relatively stable in the presence of Vpu. Taken together, these studies have elucidated that the Vpu protein requires sequences or sequence determinants in the cytoplasmic domain of CD4 to induce degradation of the glycoproteins in the cell.  相似文献   

13.
CD4 is an integral membrane glycoprotein which functions as the human immunodeficiency virus (HIV) receptor for infection of human host cells. We have recently demonstrated that Vpu, an HIV type 1 (HIV-1) encoded integral membrane phosphoprotein, induces rapid degradation of CD4 in the endoplasmic reticulum. In this report, we describe an in vitro model system that allowed us to define important parameters for Vpu-dependent CD4 degradation. The rate of CD4 decay in rabbit reticulocyte lysate was approximately one-third of that observed previously in tissue culture experiments in the presence of Vpu (40 versus 12 min) and required no other HIV-1 encoded proteins. Degradation was contingent on the presence of microsomal membranes in the assay and the coexpression of Vpu and CD4 in the same membrane compartment. By using the in vitro degradation assay, the effects of specific mutations in CD4, including C-terminal truncations and glycosylation mutants, were analyzed. The results of these experiments indicate that Vpu has the capacity to induce degradation of glycosylated as well as nonglycosylated membrane-associated CD4. Truncation of 13 C-terminal amino acids of CD4 did not affect the ability of Vpu to induce its degradation. However, the removal of 32 amino acids from the C-terminus of CD4 completely abolished sensitivity to Vpu. This suggests that Vpu targets specific sequences in the cytoplasmic domain of CD4 to induce its degradation. We also analyzed the effects of mutations in Vpu on its biological activity in the in vitro CD4 degradation assay. The results of these experiments suggest that sequences critical for this function of Vpu are located in its hydrophilic C-terminal domain.  相似文献   

14.
E Katz  E J Wolffe    B Moss 《Journal of virology》1997,71(4):3178-3187
The outer envelope of the extracellular form of vaccinia virus (EEV) is derived from the Golgi membrane and contains at least six viral proteins. Transfection studies indicated that the EEV protein encoded by the B5R gene associates with Golgi membranes when synthesized in the absence of other viral products. A domain swapping strategy was then used to investigate the possibility that the B5R protein contains an EEV targeting signal. We constructed chimeric genes encoding the human immunodeficiency virus (HIV) type 1 glycoprotein with the cytoplasmic and transmembrane domains replaced by the corresponding 42-amino-acid C-terminal segment of the B5R protein. Recombinant vaccinia viruses that stably express a chimeric B5R-HIV protein or a control HIV envelope protein with the original cytoplasmic and transmembrane domains were isolated. Cells infected with recombinant vaccinia viruses that expressed either the unmodified or the chimeric HIV envelope protein formed syncytia with cells expressing the CD4 receptor for HIV. However, biochemical and microscopic studies demonstrated that the HIV envelope proteins with the B5R cytoplasmic and transmembrane domains were preferentially targeted to the EEV. These data are consistent with the presence of EEV localization signals in the cytoplasmic and transmembrane domains of the B5R protein.  相似文献   

15.
HIV infection does not require endocytosis of its receptor, CD4   总被引:36,自引:0,他引:36  
The T cell surface molecule CD4 interacts with class II MHC molecules on the surface of target cells as well as with the envelope glycoprotein of human immunodeficiency virus (HIV). Internalization of CD4 molecules is observed after exposure of CD4+ T cells to either phorbol esters or appropriate antigen-bearing target cells. To determine whether HIV entry proceeds via receptor-mediated endocytosis or direct viral fusion with the cell membrane, we have constructed two mutants in the cytoplasmic domain of the CD4 protein that severely impair the ability of CD4 molecules to undergo endocytosis. Quantitative infectivity studies reveal that HeLa cell lines expressing wild-type or mutant CD4 molecules are equally susceptible to HIV infection. In addition, HIV binding does not lead to CD4 endocytosis. These studies indicate that although the CD4 molecule can be internalized, HIV entry proceeds via direct fusion of the viral envelope with the cell membrane.  相似文献   

16.
CD46 is a transmembrane complement regulatory protein widely expressed on nucleated human cells. Laboratory-adapted strains of measles virus (MV) bind to the extracellular domains of CD46 to enter human cells. The cytoplasmic portion of CD46 consists of a common juxtamembrane region and different distal sequences called Cyt1 and Cyt2. The biological functions of these cytoplasmic sequences are unknown. In this study, we show that expression of human CD46 with the Cyt1 cytoplasmic domain in mouse macrophages enhances production of nitric oxide (NO) in response to MV infection in the presence of gamma interferon (IFN-gamma). Human CD46 does not increase the basal levels of NO production in mouse macrophages and does not augment NO production induced by double-stranded polyribonucleotides. Replacing the cytoplasmic domain of human CD46 with Cyt2 reduces MV and IFN-gamma-induced NO production in mouse macrophages. Deleting the entire cytoplasmic domains of human CD46 does not prevent MV infection but markedly attenuates NO production in response to MV and IFN-gamma. Mouse macrophages expressing a tailless human CD46 mutant are more susceptible to MV infection and produce 2 to 3 orders of magnitude more infectious virus than mouse macrophages expressing human CD46 with intact cytoplasmic domains. These results reveal a novel function of CD46 dependent on the cytoplasmic domains (especially Cyt1), which augments NO production in macrophages. These findings may have significant implications for roles of CD46 in innate immunity and MV pathogenesis.  相似文献   

17.
18.
The third hypervariable (V3) domain of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein has been proposed to play an important role in mediating viral entry. Antibodies to the V3 domain block HIV-1 infection but not virus binding to CD4. At the center of the V3 domain is a relatively conserved sequence of amino acids, GPGRA. It has previously been shown that mutation of some of these amino acids reduced the ability of gp160 expressed on the surface of cells to induce fusion with CD4-bearing cells. In order to analyze the role of V3 domain sequences in mediating HIV entry, we introduced several amino acid substitution mutations in the GPGRA sequence of gp160 derived from HIV-1 strain HXB2 and in the analogous sequence of strain SF33, GPGKV. Virus was generated by cotransfecting the env constructs and a selectable env-negative HIV vector, HIV-gpt. When complemented with a retrovirus env gene, infectious virus capable of a single round of replication was produced. The viral particles produced were analyzed biochemically for core and envelope proteins and for infectious titer. The transfected envs were also analyzed for ability to bind to CD4 and mediate cell fusion. Several of the amino acid substitutions resulted in moderate to severe decreases in virus infectivity and fusion activity. Envelope glycoprotein assembly onto particles and CD4 binding were not affected. These results provide evidence that V3 sequences are involved in mediating the fusion step of HIV-1 entry.  相似文献   

19.
We describe replication-competent, vaccine strain-based rabies viruses (RVs) that lack their own single glycoprotein and express, instead, a chimeric RV-human immunodeficiency virus type 1 (HIV-1) envelope protein composed of the ectodomain and transmembrane domains of HIV-1 gp160 and the cytoplasmic domain of RV G. The envelope proteins from both X4 (NL4-3)- and R5X4 (89.6)-tropic HIV-1 strains were utilized. These recombinant viruses very closely mimicked an HIV-1- like tropism, as indicated by blocking experiments. Infection was inhibited by SDF-1 on cells expressing CD4 and CXCR4 for both viruses, whereas RANTES abolished infection of cells expressing CCR5 in addition to CD4 in studies of the RV expressing HIV-1(89.6) Env. In addition, preincubation with soluble CD4 or monoclonal antibodies directed against HIV-1 gp160 blocked the infectivity of both G-deficient viruses but did not affect the G-containing RVs. Our results also indicated that the G-deficient viruses expressing HIV-1 envelope protein, in contrast to wild-type RV but similar to HIV-1, enter cells by a pH-independent pathway. As observed for HIV-1, the surrogate viruses were able to target human peripheral blood mononuclear cells, macrophages, and immature and mature human dendritic cells (DC). Moreover, G-containing RV-based vectors also infected mature human DC, indicating that infection of these cells is also supported by RV G. The ability of RV-based vectors to infect professional antigen-presenting cells efficiently further emphasizes the potential use of recombinant RVs as vaccines.  相似文献   

20.
We describe a replication-competent, recombinant vesicular stomatitis virus (VSV) in which the gene encoding the single transmembrane glycoprotein (G) was deleted and replaced by an env-G hybrid gene encoding the extracellular and transmembrane domains of a human immunodeficiency virus type 1 (HIV-1) envelope protein fused to the cytoplasmic domain of VSV G. An additional gene encoding a green fluorescent protein was added to permit rapid detection of infection. This novel surrogate virus infected and propagated on cells expressing the HIV receptor CD4 and coreceptor CXCR4. Infection was blocked by SDF-1, the ligand for CXCR4, by antibody to CD4 and by HIV-neutralizing antibody. This virus, unlike VSV, entered cells by a pH-independent pathway and thus supports a pH-independent pathway of HIV entry. Additional recombinants carrying hybrid env-G genes derived from R5 or X4R5 HIV strains also showed the coreceptor specificities of the HIV strains from which they were derived. These surrogate viruses provide a simple and rapid assay for HIV-neutralizing antibodies as well as a rapid screen for molecules that would interfere with any stage of HIV binding or entry. The viruses might also be useful as HIV vaccines. Our results suggest wide applications of other surrogate viruses based on VSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号