首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
We assess the hypothesis that rates of nitrogen transformations in the soil are altered upon replacement of native by exotic trees, differing in litter properties. Ailanthus altissima and Robinia pseudoacacia, two common exotic trees naturalized in the Iberian Peninsula, were compared with the native trees Ulmus minor and Fraxinus angustifolia, respectively. Naturally senesced leaves of each species were collected and C:N ratio, N and lignin content assessed. We prepared 64 litter bags per species and left them to decompose, below the canopy of the same species and below the canopy of the paired species. Dry mass, N concentration and N pool of the remaining litter were assessed after 5 and 7 months. Soil samples were collected three times during the experiment to assess soil moisture, organic matter, pH, potential mineralization rates and mineral N pools. Mineral N availability was assessed three times in the field by using ion-exchange resin-impregnated membranes. Ailanthus litter decomposed faster than Ulmus litter, probably due to the higher toughness of the latter. In spite of its high N content, Robinia litter decomposed slower than Fraxinus one, probably due to its high lignin content. In both cases, litter decomposition was faster below the exotic than the native canopies. The release of N per unit of initial litter mass was higher under both invaded situations (Ailanthus below Ailanthus and Robinia below Robinia) than under the native ones. However, soils collected below native and exotic trees neither differed in potential N mineralization rate nor in mineral N. This may be attributed to a quick plant uptake of released N and/or to a high organic matter accumulation in the soil previous to invasion that can exert a tighter control on soil N transformations than the current exotic litter.  相似文献   

2.
Robinia pseudoacacia, a nitrogen-fixing, clonal tree species native to the central Appalachian and Ozark Mountains, is considered to be one of the top 100 worldwide woody plant invaders. We initiated this project to determine the impact of black locust (Robinia pseudoacacia) on an upland coastal ecosystem and to estimate the spread of this species within Cape Cod National Seashore (CCNS). We censused 20 × 20 m plots for vegetation cover and environmental characteristics in the center of twenty randomly-selected Robinia pseudoacacia stands. Additionally, paired plots were surveyed under native overstory stands, comprised largely of pitch pine (Pinus rigida) and mixed pitch pine–oak (Quercus velutina and Quercus alba) communities. These native stands were located 20 m from the edge of the sampled locust stand and had similar land use histories. To determine the historical distribution of black locust in CCNS, we digitized and georeferenced historical and current aerial photographs of randomly-selected stands. Ordination analyses revealed striking community-level differences between locust and pine–oak stands in their immediate vicinity. Understory nonnative species richness and abundance values were significantly higher under Robinia stands than under the paired native stands. Additionally, animal-dispersed plant species tended to occur in closer stands, suggesting their spread between locust stands. Robinia stand area significantly decreased from the 1970’s to 2002, prompting us to recommend no management action of black locust and a monitoring program and possible removal of associated animal-dispersed species. The introduction of a novel functional type (nitrogen-fixing tree) into this xeric, nutrient-poor, upland forested ecosystem resulted in ‘islands of invasion’ within this resistant system.  相似文献   

3.
4.
The success of exotic plants may be due to lower herbivore loads than those on native plants (Enemies Release Hypothesis). Predictions of this hypothesis include lower herbivore abundances, diversity, and damage on introduced plant species compared to native ones. Greater density or diversity of predators and parasitoids on exotic versus native plants may also reduce regulation of exotic plants by herbivores. To test these predictions, we measured arthropod abundance, arthropod diversity, and foliar damage on invasive Chinese tallow tree (Triadica sebifera) and three native tree species: silver maple (Acer saccharinum), sycamore (Platanus occidentalis), and sweetgum (Liquidambar styraciflua). Arthropod samples were collected with canopy sweep nets from six 20 year old monoculture plots of each species at a southeast Texas site. A total of 2,700 individuals and 285 species of arthropods were caught. Overall, the species richness and abundance of arthropods on tallow tree were similar to the natives. But, ordination (NMS) showed community composition differed on tallow tree compared to all three native trees. It supported an arthropod community that had relatively lower herbivore abundance but relatively more predator species compared to the native species examined. Leaves were collected to determine damage. Tallow tree experienced less mining damage than native trees. The results of this study supported the Enemies Release Hypothesis predictions that tallow tree would have low herbivore loads which may contribute to its invasive success. Moreover, a shift in the arthropod community to fewer herbivores without a reduction in predators may further limit regulation of this exotic species by herbivores in its introduced range.  相似文献   

5.
One of the most important sources of energy in aquatic ecosystems is the allochthonous input of detritus. Replacement of native tree species by exotic ones affects the quality of detritus entering freshwater ecosystems. This replacement can alter nutrient cycles and community structure in aquatic ecosystems. The aims of our study were (1) to compare leaf litter decomposition of two widely distributed exotic species (Ailanthus altissima and Robinia pseudoacacia) with the native species they coexist with (Ulmus minor and Fraxinus angustifolia), and (2) to compare macroinvertebrate colonization among litters of the invasive and native species. Litter bags of the four tree species were placed in the water and collected every 2, 25, 39, 71, and 95 days in a lentic ecosystem. Additionally, the macroinvertebrate community on litter bags was monitored after 25, 39, and 95 days. Several leaf chemistry traits were measured at the beginning (% lignin; lignin:N, C:N, LMA) and during the study (leaf total nitrogen). We detected variable rates of decomposition among species (k values of 0.009, 0.008, 0.008, and 0.005 for F. angustifolia, U. minor, A. altissima and R. pseudoacacia, respectively), but we did not detect an effect of litter source (from native/exotic). In spite of its low decay, the highest leaf nitrogen was found in R. pseudoacacia litter. Macroinvertebrate communities colonizing litter bags were similar across species. Most of them were collectors (i.e., they feed on fine particulate organic matter), suggesting that leaf material of either invasive or native trees was used as substrate both for the animals and for the organic matter they feed on. Our results suggest that the replacement of the native Fraxinus by Robinia would imply a reduction in the rate of leaf processing and also a slower release of leaf nitrogen to water.  相似文献   

6.
Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5 % cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.  相似文献   

7.
The accidental introduction of the spiralling whitefly, Aleurodicus dispersus Russell (Homoptera: Aleyrodidae) to Seychelles in late 2003 is exploited during early 2005 to study interactions between A. dispersus, native and exotic host plants and their associated arthropod fauna. The numbers of A. dispersus egg spirals and pupae, predator and herbivore taxa were recorded for eight related native/exotic pairs of host plants found on Mahé, the largest island in Seychelles. Our data revealed no significant difference in herbivore density (excluding A. dispersus) between related native and exotic plants, which suggests that the exotic plants do not benefit from ‘enemy release’. There were also no differences in predator density, or combined species richness between native and exotic plants. Together these data suggest that ‘biotic resistance’ to invasion is also unlikely. Despite the apparent lack of differences in community structure significantly fewer A. dispersus egg spirals and pupae were found on the native plants than on the exotic plants. Additional data on A. dispersus density were collected on Cousin Island, a managed nature reserve in which exotic plants are carefully controlled. Significantly higher densities of A. dispersus were observed on Mahé, where exotic plants are abundant, than on Cousin. These data suggest that the rapid invasion of Seychelles by A. dispersus may largely be due to the high proportion of plant species that are both exotic and hosts of A. dispersus; no support was found for either the ‘enemy release’ or the ‘biotic resistance’ hypotheses.  相似文献   

8.
The physic nut (Jatropha curcas L.) is a multipurpose and oil‐producing shrub of Central and South American origin. Since the 15th century, this shrub has existed across tropical regions. Despite its presumed resistance to herbivores, reports show that arthropod herbivores infest it. However, no comprehensive account of arthropod herbivores, which consume the physic nut, exists. Here, we conducted a literature review that provides a comprehensive account of arthropod herbivores of the physic nut. Based on the co‐evolutionary hypothesis, we expected to find a higher herbivore of species richness and a larger proportion of native herbivores within the native range than elsewhere. As physic nut is a well‐defended plant chemically, we expected to find evidence for highest herbivory levels in plant parts that are the least defended. By the literatures review, we compiled 78 arthropod herbivores representing nine orders and from 31 families that feed on physic nut across the globe. As expected, the highest numbers of herbivores (34 species) were documented within the native range of the J. curcas and the lowest species number (21 species) in Africa. Of the 34 species in Central and South America, 94% were of native origin. Nine species were found feeding on J. curcas on more than one continent. Origins of 49% of species were from the native range of J. curcas. The highest percentage (54%) of species belonged to Hemiptera. With regard to feeding guilds, 59% of the herbivores belonged to sucking and 41% to chewing species. Forty‐one per cent of species were flower or fruit feeders, and 36% foliage feeders. We conclude that J. curcas is, despite its toxicity, vulnerable to herbivory, mainly to foliage, flower and fruit feeders.  相似文献   

9.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

10.
Dispersal by frugivorous birds facilitates invasion by many exotic plants. We measured the seed rain of ornithochorous native and exotic plants at three habitats of a fragmented landscape of the northeastern United States for 1 year. We studied maple-beech forests, old fields, and abandoned conifer plantations. Across all sites we collected 2,196 ornithochorous seeds, including seeds from six exotic species and 10 native species. The majority (90%) of collected seeds were from exotic species. Seed dispersal was broadly similar among habitats, though seed rain of exotic species was higher in old fields than forested habitats. Seed rain was not strongly influenced by artificial perches for most species. However, seeds of exotic species were more commonly found in traps under an artificial perch in old fields. Seed rains for the exotic Elaeagnus umbellata, Rhamnus cathartica, and Rosa multiflora were positively associated with local density of mature plants. Seed rain of R. cathartica was positively associated with abundance of seedlings but not saplings, suggesting that post-dispersal mortality was important. Seed dispersal of the exotic Lonicera spp. was high in all habitats, accounting for 66% of all seeds collected. With the exception of Lonicera spp., seed rain of common exotic invaders was affected by the abundance of seed sources, and these species might be effectively controlled by elimination of local fruiting plants. Fruits of Lonicera morrowii, which has extensively invaded our area, are apparently a common component in the diet of frugivores.  相似文献   

11.
Aims Invasive species continue to be a worldwide threat to ecosystems mainly as a cause for biodiversity loss. Forest ecosystems, for example, are subject to a change in species composition due to the invasion of exotic species. Specifying the attributes that cause the strong competitiveness of several exotic species may improve the ability to understand and effectively manage plant invasions in the future. In this study the following hypotheses were tested: (1) biomass production of below- and aboveground plant components of the exotic tree species is higher than that of the natives, resulting in a higher competitiveness of the exotics; (2) the exclusion of root competition has a positive effect on the biomass production of the inferior native species; and (3) mixtures of native and exotic species yield a higher biomass production than the respective monocultures.Methods A pot experiment, containing about 2000 tree seedlings, was established. We investigated the biomass productivity and growth reactions of two native (Quercus robur L., Carpinus betulus L.) and two exotic tree species (Prunus serotina Ehrh., Robinia pseudoacacia L.) in different intra- and interspecific, competitive situations with and without the influence of root competition.Important findings The biomass production of both exotic species was significantly higher and led to a strong competitive advantage, resulting in a biomass decrease of the less competitive native species. The high belowground biomass of both exotic species had a negative effect on the biomass production. The competitive pressure of exotic tree seedlings on the native ones was largely driven by root competition. Furthermore, mixtures of native and exotic tree species had a higher productivity than their growth in monocultures would have predicted. Competition was lower for exotic species in mixtures with the less productive native species compared to the competition in monocultures or in mixture with the other highly productive exotic species. Accordingly, both highly competitive exotic species produced less biomass in mixture with each other compared to monocultures. Despite the significantly higher biomass of P. serotina in all mixtures and in monoculture, R. pseudoacacia seemed to be the dominating species. Due to its strong root competition, R. pseudoacacia significantly reduced the biomass production of P. serotina .  相似文献   

12.
Abstract. Secondary succession and seed bank formation was studied in a formerly grazed, abandoned, eastern Hungarian sandy steppe‐meadow (Pulsatillo‐Festucetum). The vegetation was sampled at different elevations of a sand dune which became partly invaded by the tree Robinia pseudo‐acacia ca. 10 yr ago. Pre‐abandonment vegetation records were used as historic references. Though composition of the non‐invaded grassland only changed moderately, dominance of tall grasses (Elymus hispidus, Poa angustifolia) increased significantly at the cost of annuals and low stature perennials. In the stand invaded by Robinia most grassland species were lost and replaced by nitrophytes. Vertical position influenced species abundance, but affected the composition only moderately. Fine‐scale zonation of the vegetation also changed with time. Species richness of the above‐ground vegetation and the seed density of soil samples at the lower elevation were slightly greater than at the higher sites. Seed banks of sensitive grassland specialists (e.g. Pulsatilla pratensis subsp. hungarica) disappeared during grass encroachment. Following extinction from above‐ground vegetation, restoration must rely on dispersal from adjacent areas. In contrast, several annuals and perennials, which survived this degradation stage in the above‐ground vegetation, possessed seed banks. Many of these species became extinct from the vegetation during the Robinia invasion but left viable persistent seeds. This fact is promising for restoration of the Potentillo‐Festucetum sandy pasture. Competitive weedy species and sprouting Robinia can, however, limit seedling establishment.  相似文献   

13.
Abstract 1. Biological invasions are usually thought to have a negative impact on native communities. However, data supporting this idea are often based on comparative studies between invaded and non‐invaded areas, and are spatially and temporally limited. 2. The present study experimentally assessed the impact of an exotic wasp, Vespula germanica, on the native arthropod community of north‐west Patagonia during 3 years in an area of 80 ha. Vespula germanica is an exotic social vespid that invaded north‐west Patagonia 20 years ago. It has been suggested that its populations affect native arthropods because of its broad diet and also because Patagonia lacks natural enemies and potential competitors for these wasps. 3. Using wasp‐specific toxic baits, V. germanica abundance was reduced in five sites of native woodlands during 3 consecutive years. The abundance, species richness, and composition of arthropods between non‐poisoned (control) and poisoned sites was then compared, both before and after the wasps were poisoned. 4. Wasp abundance represented 6% of the total arthropod catches in non‐poisoned sites and was reduced, on average, by 50% in the treated areas. The abundance, species richness, and composition of the arthropod community (305 species, 24 600 individuals) did not differ between control areas and areas where the abundance of V. germanica was reduced. Significant differences in response variables were found only before wasp poisoning had begun and were related to variations among sites. 5. These results suggest that V. germanica is not affecting the local arthropod assemblages, contradicting past work in other regions. The low relative abundance of wasps in Patagonia, when compared with other invaded regions, might explain the findings. 6. The present study provides further evidence for the importance of large‐scale experimental work with before/after comparisons to fully understand the impact of invaders on natural communities.  相似文献   

14.
Generalist insect herbivores, such as grasshoppers, may either avoid feeding on exotic plants, potentially enabling these plants to become invasive in the introduced range, or insects may incorporate exotic plants into their diet, contributing to the biotic resistance of native communities and potentially preventing plant invasions. Accurate determination of insect diet preferences with regard to native and exotic plants can be challenging, but this information is critical for understanding the interaction between native herbivores and exotic plants, and ultimately the mechanisms underlying plant invasions. To address this, we combined behavioral and molecular approaches to accurately compare food consumption of the polyphagous red‐legged grasshopper, Melanoplus femurrubrum (De Geer) (Orthoptera: Acrididae), on native [Andropogon gerardii Vitman and Bouteloua curtipendula (Michx.) Torr.] and exotic, potentially invasive grasses [Miscanthus sinensis Andersson and Bothriochloa ischaemum (L.) Keng] (all Poaceae). We found that M. femurrubrum grasshoppers demonstrated strong feeding preferences toward exotic grasses in experiments with intact plants under both field and greenhouse conditions, but they showed no preference in experiments with clipped leaves. Additionally, we sampled the gut contents of M. femurrubrum collected in the field and identified the ingested plant species based on DNA sequences for the non‐coding region of the chloroplast trnL (UAA) gene. We found that exotic plants were prevalent in the gut contents of grasshoppers collected at study sites in Ohio and Maryland, USA. These results suggest that the generalist herbivore M. femurrubrum does not avoid feeding on exotic grasses with which they do not share coevolutionary history. In addition, by demonstrating greater food consumption of exotic plants, these grasshoppers potentially provide biotic resistance should these grasses escape cultivation and become invasive in the introduced range.  相似文献   

15.
Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.  相似文献   

16.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   

17.
Exotic plants can affect native plants indirectly through various biotic interactions. However, combinations of the multiple indirect effects of exotic plants on native plants have been rarely evaluated. Herbivory can either positively or negatively influence plant–pollinator interactions. Here, we addressed whether the pollinator-mediated plant interaction between exotic and native plants is altered through the introduction of exotic herbivores by conducting a 2-year common garden experiment. We compared the effects of pollinator-mediated indirect effects of an exotic plant, Solidago altissima, on the co-flowering native plant Aster microcephalus in geographically different populations reflecting differences in insect herbivore communities. We found a positive effect of co-flowering S. altissima on pollinator visitation of A. microcephalus, which varied between gardens and years. The co-flowering S. altissima did not significantly affect the seed set of A. microcephalus in the first year but had a negative effect in the second year. The facilitative effect of S. altissima on A. microcephalus pollination was suggested to be negatively affected by an exotic aphid, while it was not significantly affected by an exotic lace bug. Our study suggests that the phenology and feeding guilds of the herbivores may be critical for predicting the effect of exotic plants on native plants through herbivore–pollinator interactions. Integrated effects between plant interactions via multiple species interactions under different abiotic and biotic environments are necessary to understand the impact of exotic plants under complex interactions in nature.  相似文献   

18.
A comparative phytosociological study was made out on two types of forest on the southern slopes of Moslavaka gora in the western part of the Pannonic Plain, Yugoslavia: acidophilic oak forest of Festuco-Quercetum petraeae Hruka 1975 and areas where Robinia pseudoacacia has been introduced by man. After cutting, the oakforest reestablishes spontaneously. Reafforestation with Robinia leads to changes irreversible in species composition and vegetational structure and prevents reestablishment of oak forest. The introduction of this allochthonous species prevents the primary wood from being restored. Forestry planting projects with a view to reducing the Robinia have so far proved ineffective.  相似文献   

19.
This study examines the impact of the exotic nitrogen-fixing legume Melilotus officinalis (L.) Lam. on native and exotic species cover in two Great Plains ecosystems in Badlands National Park, South Dakota. Melilotus is still widely planted and its effects on native ecosystems are not well studied. Melilotus could have direct effects on native plants, such as through competition or facilitation. Alternatively, Melilotus may have indirect effects on natives, e.g., by favoring exotic species which in turn have a negative effect on native species. This study examined these interactions across a 4-year period in two contrasting vegetation types: Badlands sparse vegetation and western wheatgrass (Pascopyrum smithii) mixed-grass prairie. Structural equation models were used to analyze the pathways through which Melilotus, native species, and other exotic species interact over a series of 2-year time steps. Melilotus can affect native and exotic species both in the current year and in the years after its death (a lag effect). A lag effect is possible because the death of a Melilotus plant can leave an open, potentially nitrogen-enriched site on the landscape. The results showed that the relationship between Melilotus and native and exotic species varied depending on the habitat and the year. In Badlands sparse vegetation, there was a consistent, strong, and positive relationship between Melilotus cover and native and exotic species cover suggesting that Melilotus is acting as a nurse plant and facilitating the growth of other species. In contrast, in western wheatgrass prairie, Melilotus was acting as a weak competitor and had no consistent effect on other species. In both habitats, there was little evidence for a direct lag effect of Melilotus on other species. Together, these results suggest both facilitative and competitive roles for Melilotus, depending on the vegetation type it invades.  相似文献   

20.
Abstract Ecological restoration enjoys widespread use as a technique to mitigate for environmental damage. Success of a restoration project often is evaluated on the basis of plant cover only. Recovery of a native arthropod fauna is also important to achieve conservation goals. I sampled arthropod communities by pitfall trapping in undisturbed, disturbed, and restored coastal sage scrub habitats in southern California. I evaluated arthropod community composition, diversity, and abundance using summary statistics, cluster analysis, and detrended correspondence analysis (DCA) and investigated influence of vegetation on arthropod communities with multiple regression analysis. Arthropod diversity at undisturbed and disturbed sites was greater than at sites that were 5 and 15 years following restoration ( p < 0.05). Number of arthropod species was not significantly different among undisturbed, disturbed, and restored sites, and two restoration sites had significantly more individuals than other sites. Vegetation at disturbed and undisturbed sites differed significantly; older restorations did not differ significantly from undisturbed sites in diversity, percent cover, or structural complexity. In multiple regression models, arthropod species richness and diversity was negatively related to vegetation height but positively related to structural complexity at intermediate heights. Exotic arthropod species were negatively associated with overall arthropod diversity, with abundance of the earwig Forficula auricularia best predicting diversity at comparison (not restored) sites (r2 = 0.29), and abundance of the spider Dysdera crocata and the ant Linepithema humile predicting diversity at all sites combined (r2 = 0.48). Native scavengers were less abundant at restored sites than all other sites and, with a notable exception, native predators were less abundant as well. DCA of all species separated restored sites from all other sites on the first axis, which was highly correlated with arthropod diversity and exotic arthropod species abundance. Lower taxonomic levels showed similar but weaker patterns, with example families not discriminating between site histories. Vegetation characteristics did not differ significantly between the newly restored site and disturbed sites, or between mature restoration sites and undisturbed sites. In contrast, arthropod communities at all restored sites were, as a group, significantly different from both disturbed and undisturbed sites. As found in other studies of other restoration sites, arthropod communities are less diverse and have altered guild structure. If restoration is to be successful as compensatory mitigation, restoration success standards must be expanded to include arthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号