首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We report the changes of proliferative activity of the retina and retinal pigment epithelium (RPE) of mouse embryos by detecting cells in the S-phase by light microscopic radioautography using 3H-thymidine. The eyes germs of mouse embryos at the embryonic days 9.5 (E 9.5), E 11.5, E 13.0, E 15.5, E 18.5 of gestational ages, were used for this experiment. Small pieces of the ocular tissues were labelled with 3H-TDR in vitro and light microscopic radioautographs were prepared. The labeling indices of the respective regions of tissues were calculated. Both tissues of retina and RPE showed high percentages of labeling indices from 10% to 50% through the developmental stages. The labeling indices of both tissues in earlier stages were generally higher than those of later stages, and gradually decreased in the later stages. However, the retina and RPE showed different courses of the changes of labeling indices respectively during the embryonic development. In the retina, the labeling indices in the vitreal portions were more than those in the scleral portions during the earlier developmental stages. However, in the later stages, the indices of scleral portions were more than those in the vitreal portions. Comparing the three regions of retina, the labeling indices of the anterior regions were generally higher than those of the equatorial and posterior regions, especially in the vitreal portion. Remarkable differences among three regions were not found in the scleral portion. In the RPE, the labeling indices gradually increased in the anterior region, but decreased in the equatorial and the posterior regions through all the developmental stages. The proliferation of both retina and RPE in the central region occurred earlier than those of the peripheral region.  相似文献   

2.
Since neural retina stimulates regeneration of a lens from the dorsal iris in newts, RNA and protein synthesis in the neural retina was investigated during this process. Incorporation of 3H-uridine and 3H-leucine using liquid scintillation counting was employed to compare RNA and protein synthesis in the neural retina from sham-operated control eyes with that in eyes during lens regeneration. An initial increase in 3H-uridine uptake was seen one to three days after lentectomy. This was followed by greater incorporation of 3H-leucine, indicating increased protein synthesis between 5 to 15 days after lens removal. A decrease in 3H-uridine uptake was also seen at 5 to 12 days after lentectomy. After 20 days both the RNA and protein synthesis returned to the normal level. Since the increase in protein synthesis is preceded by an increase in RNA synthesis, the two processes might be related. The results indicate significant changes in the synthesis of macromolecules by the neural retina following lentectomy. These may be indirectly related to the production of the neural retinal factor with stimulates lens differentiation.  相似文献   

3.
The formation of neural retina (NR) from retinal pigmented epithelium (RPE) of chick embryos in culture was investigated. In cultures of explants of PRE, depigmented, preretinal foci, consisting of 50 to 100 cells appeared in the pigmented central portion of the explant within three days. Then these depigmented cells increased rapidly in number and by about day 14 they formed characteristic spherical bodies, which were identified as a neural retinal-like structure (NR structure) by electron microscopic observations. Culture of explants of RPE from embryos of different stages showed that the capacity of embryonic RPE to form an NR structure decreased steadily with embryonic age from st. 24 to 27. At and after stage 27, no foci leading to the neural retinal differentiation were formed in the explants. Medium conditioned by cell cultures of chicken embryonic NR, RPE or chondrocytes had no effect on the formation of NR structures by explants of RPE.  相似文献   

4.
Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated. TGF-alpha overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-alpha-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.  相似文献   

5.
RNA metabolism at 1-, 2- and 8-celled stages was studied in C3H and C57Bl mice by means of detection of RNA content in individual embryos and microcolumnal chromatography of lysate of the embryos labelled with 3H-uridine. The increase of RNA content in the 8-celled embryos of the both strains is due to active synthesis of high and low molecular weight RNAs during this period. A comparison of 3H-uridine incorporation in RNA, and nucleotide fractions of 2-celled embryos has shown that the embryonic genome per se is activated earlier in C3H mice. The embryonic development and RNA changes in them are similar in the pure bred and hybrid embryos with common mothers. This serves as an additional evidence of the leading role of maternal factors in embryonic development during the first cleavage divisions.  相似文献   

6.
7.
With the use of light microscopic autoradiography, the incorporation and subsequent distribution of [3H]thymidine within the retinas of sequentially staged rat embryos was studied during the period when large numbers of cells become necrotic and were resorbed within the optic rudiment. In the 48 hr following injection of isotope on embryonic Day 11, the number of grains overlying the dorsal, nondegenerate portion of the retina decreased to a low level, whereas ventrally, where the retina becomes intensely necrotic, the grain counts remained at much greater levels. The results indicate that thymidine may be recycled within normally degenerate regions of the embryonic retina.  相似文献   

8.
RNA synthesis was examined in the epithelial cells of the mouse pyloric antrum using radioautography 20 min after injection of either 3H-uridine or 3H-orotic acid. The epithelium of the mouse antrum was known to invaginate into blind tubular units composed of mucous cells arranged from base to top into a gland, an isthmus, and a pit. These were subdivided into segments and, after radioautography, silver grains were counted over cell nuclei in each segment. Following 3H-uridine injection, silver grains were present over all nuclei but were more abundant over those of the isthmus than of the gland or the pit. When nuclei were examined in the electron microscope, nucleoplasmic as well as nucleolar silver grains were more numerous in the isthmus than in the pit or gland. Following 3H-orotic acid injection, silver grains were again present over all nuclei; but maximal incorporation appeared to be in pit cell nuclei where, by electron microscopy, it was mainly assigned to the nucleoplasm. When the incorporation was calculated per whole nucleus, however, it was less in pit cell than in isthmal cell nuclei. Even so, the proportion of label in pit cell nuclei was much greater than after 3H-uridine injection. The interpretation of these findings is based on the fact that isthmal cells are immature, whereas cells migrating from the isthmus to become gland or pit cells show increasing differentiation. The immature cells of the isthmus incorporate both uridine and orotic acid more effectively than do the differentiated cells of pit and gland. Since silver grain counts over nuclei provide an index of the rate of RNA synthesis, this synthesis proceeds more actively in the isthmus than in the pit or gland. This is true of ribosomal RNA synthesis, as shown by nucleolar grain counts, and of other RNA's synthesis, as shown by nucleoplasmic grain counts. It seems, however, that while uridine is involved in the synthesis of all types of RNA, orotic acid is mainly implicated in the synthesis of the heterogeneous RNA from which the messenger RNA arises.  相似文献   

9.
The present study investigated the ontogeny of 3H-uridine incorporation into RNA as a measure for RNA synthesis in preimplantation porcine embryos from the two-cell stage up to the stage of the newly hatched blastocyst. A total of 568 embryos were cultured in vitro for 3 hr in medium (KRB plus lamb serum) containing 9 microM 3H-uridine. After disruption of cell membranes, RNA was isolated on DEAE cellulose filters, and the radioactivity was taken as a measure for the rate of RNA synthesis. No RNA synthesis was detected at the two-cell stage. From the four-cell to the morula stage, 3H-uridine incorporation per embryo increased about ninefold (P less than 0.001); in blastocyst stages, the increase between developmental stages was not statistically significant. Hatched blastocysts had the highest genomic activity. On a per cell basis, 3H-uridine incorporation was not different from the four-cell stage up to the zona pellucida-intact blastocyst and amounted to 0.29-0.37 fmol 3H-uridine incorporation/cell/3 hr. In hatched blastocysts, 3H-uridine incorporation per blastomere was increased (P less than 0.01 compared with younger stages) and amounted to 0.86 fmol 3H-uridine incorporation/cell/3 hr. It is concluded that 1) the rate of uridine incorporation depends on the cell stage in zona pellucida-intact porcine embryos and 2) uridine incorporation per blastomere is significantly increased in hatched blastocysts compared with earlier stages.  相似文献   

10.
Explants of bovine eyes consisting of retina, with its underlying choroid and sclera (termed retinal explants) were maintained in organ culture in the absence or presence of alpha-melanocyte stimulating hormone (alpha-MSH) for up to 19 days. The conditioned media was collected twice a week and assayed for the following eicosanoids, prostaglandin E2 (PGE2) and prostacyclin. The addition of alpha-MSH to the incubation media resulted in a 1.5 fold enhancement in the production of both PGE2 and prostacyclin. This stimulatory effect diminished after 11 days. Additionally, the three tissue components comprising the retinal explants i.e. 1. neural retina 2. retinal pigment epithelium (RPE) with its underlying vascular layer (choroid) and 3. scleral tissue were separated and incubated in the presence or absence of alpha-MSH. Hormone treatment caused an enhanced eicosanoid production by RPE tissue alone, while its production by the neuronal retina and sclera was reduced or unaffected respectively. This demonstrates that the RPE layer is the source for the alpha-MSH induced eicosanoid production observed in the whole retinal explant. Our findings demonstrate, for the first time that alpha-MSH can stimulate prostaglandin production by RPE maintained in organ culture.  相似文献   

11.
12.
Three cold shock domain (CSD) family members (YB-1, MSY2, and MSY4) exist in vertebrate species ranging from frogs to humans. YB-1 is expressed throughout embryogenesis and is ubiquitously expressed in adult animals; it protects cells from senescence during periods of proliferative stress. YB-1-deficient embryos die unexpectedly late in embryogenesis (embryonic day 18.5 [E18.5] to postnatal day 1) with a runting phenotype. We have now determined that MSY4, but not MSY2, is also expressed during embryogenesis; its abundance declines substantially from E9.5 to E17.5 and is undetectable on postnatal day 1(adult mice express MSY4 in testes only). Whole-mount analysis revealed similar patterns of YB-1 and MSY4 RNA expression in E11.5 embryos. To determine whether MSY4 delays the death of YB-1-deficient embryos, we created and analyzed MSY4-deficient mice and then generated YB-1 and MSY4 double-knockout embryos. MSY4 is dispensable for normal development and survival, but the testes of adult mice have excessive spermatocyte apoptosis and seminiferous tubule degeneration. Embryos doubly deficient for YB-1 and MSY4 are severely runted and die much earlier (E8.5 to E11.5) than YB-1-deficient embryos, suggesting that MSY4 indeed shares critical cellular functions with YB-1 in the embryonic tissues where they are coexpressed.  相似文献   

13.
Selenoprotein P (Sepp) is an extracellular glycoprotein which functions principally as a selenium (Se) transporter and antioxidant. In order to assess the spatiotemporal expression of the Sepp gene during mouse embryogenesis, quantitative RT-PCR and in situ hybridization analyses were conducted in embryos and extraembryonic tissues, including placenta. Sepp mRNA expression was detected in all embryos and extraembryonic tissues on embryonic days (E) 7.5 to 18.5. Sepp mRNA levels were high in extraembryonic tissues, as compared to embryos, on E 7.5-13.5. However, the levels were higher in embryos than in extraembryonic tissues on E 14.5-15.5, but were similar in both tissues during the subsequent periods prior to birth. According to the results of in situ hybridization, Sepp mRNA was expressed principally in the ectoplacental cone and neural ectoderm, including the neural tubes and neural folds. In whole embryos, Sepp mRNA was expressed abundantly in nervous tissues on E 9.5-12.5. Sepp mRNA was also expressed in forelimb and hindlimb buds on E 10.5-12.5. In the sectioned embryos, on E 13.5-18.5, Sepp mRNA was expressed persistently in the developing limbs, gastrointestinal tract, nervous tissue, lung, kidney and liver. On E 16.5-18.5, Sepp mRNA expression in the submandibular gland, whisker follicles, pancreas, urinary bladder and skin was apparent. In particular, Sepp mRNA was detected abundantly in blood cells during all the observed developmental periods. These results show that Sepp may function as a transporter of selenium, as well as an antioxidant, during embryogenesis.  相似文献   

14.
BACKGROUND: Normal embryonic development and survival in utero is dependent on an adequate supply of vitamin A. Embryos from vitamin A-deficient (VAD) pregnant rats fed an inadequate amount of all-trans retinoic acid (atRA; 12 microg per g of diet or approximately 230 microg per rat per day) exhibit severe developmental abnormalities of the anterior cardinal vein and hindbrain by embryonic day (E) 12.5 and die shortly thereafter. METHODS: In the present study, we sought to determine whether supplementation of VAD-RA supported (12 microg per g of diet) pregnant rats with retinol (ROL) at the late-gastrula (presomite or rat E9.5) or early somite stages (E10.5), or provision of higher levels of atRA throughout this period could prevent abnormalities in the developing cardiovascular and nervous systems. RESULTS: A newly described defect in the sinuatrial venus valve along with enlarged anterior cardinal veins and nervous system abnormalities and the later death of embryos are prevented by supplementing pregnant animals with ROL on the morning of E9.5. If ROL supplementation is delayed by 1 day (E10.5), most embryos are abnormal and die by E18.5. Supplementation of VAD rats with atRA (250 microg per g of diet) between E8.5 and E10.5 also prevents the cardiovascular and nervous system abnormalities and a significant number of these embryos survive to parturition. Thus, high levels of atRA can obviate the need for ROL between E9.5 and E10.5. CONCLUSIONS: These results support an essential role for retinoid signaling between the late gastrula and early somite stages in the rat embryo for normal morphogenesis of the primitive heart tube and the posterior hindbrain. Further, these results suggest that embryonic death occurring at midgestation in the VAD rat may be linked to the abnormal development of one or both of these embryonic structures.  相似文献   

15.
16.
17.
18.
A study was made of proliferative activity and transdifferentiation of the cells of retinal pigment epithelium (RPE) cultivated in the cavity of the lensectomized eye of adult newt. Implantation of the newt RPE together with vascular membrane and scleral coat resulted in the regeneration of retina. In this process the character of changes in the proliferative activity of RPE and differentiation of retinal cells were the same as in the regeneration of retina in situ. RPE implanted with the vascular membrane alone, despite a high level of proliferation during the first ten days of cultivation, no differentiated retina was formed. Possible causes of these differences are discussed, and the comparison is made of the data obtained with those on RPE cultivation in vitro. After lens removal, with RPE implants present in the eye cavity, in addition to the regenerated lens, 2-3 extra lenses and retina were formed from the cells of the inner layer of the recipient's dorsal iris. Also some cases were revealed of lens formation from the cells of ventral iris. With a complete detachment of the recipient's retina (an after-effect of transplantation) a second differentiated retina regenerated in situ from the recipient's RPE cells.  相似文献   

19.
 It has been reported that in the chick embryonic retina, N-cadherin first appears at the very early stages and is subsequently substituted by R-cadherin at the middle to late stages of development. To examine the role of R-cadherin in the morphogenesis of chick retinal pigment epithelium (RPE), the distribution of this adhesion molecule was studied by immunofluorescence cytochemistry and immunoelectron microscopy from embryonic day (E) 6 to hatching. R-cadherin immunoreactivity was detected at E6, and was strongest at E12–13. During these stages, R-cadherin was expressed uniformly on the lateral plasma membranes of RPE cells in contact with each other. Thereafter, R-cadherin immunoreactivity was markedly decreased, with intense immunoreactivity restricted to zonulae adherentes in latero-apical regions at E16. R-cadherin immunoreactivity was no longer detectable in the newly hatched chick RPE, even though morphologically well developed zonulae adherentes were present in latero-apical regions. No immunoreactivity was detected on the apical side facing the neural retina or on the basal side facing the basal lamina at any stage of development. These findings indicate that R-cadherin plays an important role as a major cadherin subtype in the morphogenesis of chick embryo RPE, and is involved initially in non-specific cell-cell adhesions, and subsequently in the formation and maintenance of developing zonulae adherentes. Accepted: 11 April 1997  相似文献   

20.
A Lupulescu 《Prostaglandins》1975,10(4):573-579
The effect of exogenous prostaglandins E1, E2 and F2alpha (PGE1, PGE2 and PGF2alpha) on 3H-leucine, 3H-uridine, 3H-thymidine and 3H-proline incorporation in experimental cutaneous wounds has been studied in rats. Prostaglandins E1 and E2 markedly stimulate the incorporation of these tritiated precursors, into protein, RNA, DNA and collagen synthesis, whereas F2 inhibits it. All tested prostaglandins exhibit their maximum effect within the first hours following administration. Most active is PGE1. These observations indicate that application of prostaglandins significantly stimulate incorporation with protein, RNA, DNA and collagen synthesis in the skin of wounded rats and thus, may play a role in epidermal cell growth and division as well as in scar-forming tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号