首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate estimation of the wall stress distribution in an abdominal aortic aneurysm (AAA) may prove clinically useful by predicting when a particular aneurysm will rupture. Appropriate constitutive models for both the wall and the intraluminal thrombus (ILT) found in most AAA are necessary for this task. The purpose of this work was to determine the mechanical properties of ILT within AAA and to derive a more suitable constitutive model for this material. Uniaxial tensile testing was carried out on 50 specimens, including 14 longitudinally oriented and 14 circumferentially oriented specimens from the luminal region of the ILT, and 11 longitudinally oriented and 11 circumferentially oriented specimens from the medial region. A two-parameter, large-strain, hyperelastic constitutive model was developed and used to fit the uniaxial tensile testing data for determination of the material parameters. Maximum stiffness and strength were also determined from the data for each specimen. Scanning electron microscopy (SEM) was conducted to study the regional microstructural difference. Our results indicate that the microstructure of ILT differs between the luminal, medial, and abluminal regions, with the luminal region stronger and stiffer than the medial region. In all cases, the constitutive model fit the experimental data very well (R2>0.98). No significant difference was found for either of the two material parameters between longitudinal and circumferential directions, but a significant difference in material parameters, stiffness, and strength between the laminal and medial regions was determined (p<0.01). Therefore, our results suggest that ILT is an inhomogeneous and possibly isotropic material. The two-parameter, hyperelastic, isotropic, incompressible material model derived here for ILT can be easily incorporated into finite element models for simulation of wall stress distribution in AAA.  相似文献   

2.
The biomechanical response of normal and pathologic human abdominal aortic tissue to uniaxial loading conditions is insufficient for the characterization of its three-dimensional (3D) mechanical behavior. Planar biaxial mechanical evaluation allows for 3D constitutive modeling of nearly incompressible tissues, as well as the investigation of the nature of mechanical anisotropy. In the current study, 26 abdominal aortic aneurysm (AAA) tissue samples and 8 age-matched (> 60 years of age) nonaneurysmal abdominal aortic (AA) tissue samples were obtained and tested using a tension-controlled biaxial testing protocol. Graphical response functions (Sun et al., 2003. J. Biomech. Eng. 125, 372-380) were used as a guide to describe the pseudo-elastic response of AA and AAA. Based on the observed pseudo-elastic response, a four-parameter exponential strain energy function developed by Vito (1990. J. Biomech. Eng. 112, 153-159) was used from which both an individual specimen and group material parameter sets were determined for both AA and AAA. Peak Green strain values in the circumferential (Ethetatheta,max) and longitudinal (ELL,max) directions under an equibiaxial tension of 120 N/m were also compared. The strain energy function fit all of the individual specimens well with an average R2 of 0.95 +/- 0.02 and 0.90 +/- 0.02 (mean +/- SEM) for the AA and AAA groups, respectively. The average Ethetatheta,max at 200 N/m equibiaxial tension was found to be significantly smaller for AAAs as compared to AAs (0.07 +/- 0.01 versus 0.13 +/- 0.03, respectively; p < 0.01). There was also a pronounced increase in the circumferential stiffness for AAA tissue as compared to AA tissue, indicating a larger degree of anisotropy for this tissue as compared to age-matched AA tissue. We also observed that the four-parameter Fung-elastic model was not able to fit the AAA tissue mechanical response using physically realistic material parameter values. It was concluded that aneurysmal degeneration of the abdominal aorta is associated with an increase in mechanical anisotropy, with preferential stiffening in the circumferential direction.  相似文献   

3.
Abdominal aortic aneurysm (AAA) is a significant health problem. Current clinical rupture-risk relies primarily on the maximum diameter of the AAA and also growth rate. However, AAAs are a patient-specific problem and recently, numerical tools have been employed to estimate rupture-potential. Alternatively, experimental assessment of AAA biomechanics receives less attention, yet, rigorous validation of numerical tools is required prior to clinical acceptance. This paper examines the use of the photoelastic method to assess wall strain and its validation using finite element analysis (FEA) in a small number of patient-specific AAA models. Experimental models were manufactured in-house using the injection-moulding procedure together with a commercially available photoelastic material. The material was mechanically characterised prior to testing, with models examined under three loading regimes (80, 120 and 160mmHg). Each experimental model was imaged using computed tomography (CT) and reconstructed in three dimensions (3D) for numerical analyses. Experimental wall strain was measured and numerical wall strain calculated with finite element analysis (FEA). Results were qualitatively and quantitatively compared. There was good qualitative agreement between the experimental and numerical methods, with similar trends apparent throughout all models at all pressures. Overall, acceptable percentage errors between the techniques were observed for all models. Median errors of -6.5%, -0.4% and 3.9% for the models at 80, 120 and 160mmHg pressures, respectively, were determined. The photoelastic method is a very useful experimental tool that provides instant, easy to interpret, information regarding wall strain. The technique is useful for validation of numerical AAA studies.  相似文献   

4.
5.
Knowledge of the wall stresses in an abdominal aortic aneurysm (AAA) may be helpful in evaluating the need for surgical intervention to avoid rupture. This must be preceded by the development of a more suitable finite strain constitutive model for AAA, as none currently exists. Additionally, reliable stress analysis of in vivo AAA for the purposes of clinical diagnostics requires patient-specific values of the material parameters, which are difficult to determine noninvasively. The purpose of this work, therefore, was three-fold: (1) to develop a finite strain constitutive model for AAA; (2) to estimate the variation of model parameters within a sample population; and (3) to evaluate the sensitivity of computed stress distribution in AAA due to this biologic variation. We propose here a two parameter, hyperelastic, isotropic, incompressible material model and utilize experimental data from 69 freshly excised AAA specimens to both develop the functional form of the model and estimate its material parameters. Parametric analyses were performed via repeated finite element computations to determine the effect of varying each of the two model parameters on the stress distribution in a three-dimensional AAA model. The agreement between experimental data and the proposed functional form of the constitutive law was very good (R2 > 0.9). Our finite element simulations showed that the computed AAA wall stresses changed by only 4% or less when both the parameters were varied within the 95% confidence intervals for the patient population studied. This observation indicates that in lieu of the patient-specific material parameters, which are difficult to determine the use of population mean values is sufficiently accurate for the model to be reasonably employed in a clinical setting. We believe that this is an important advancement toward the development of a computational tool for the estimation of rupture potential for individual AAA, for which there is great clinical need.  相似文献   

6.
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice, once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted.  相似文献   

7.
Recent numerical studies of abdominal aortic aneurysm (AAA) suggest that intraluminal thrombus (ILT) may reduce the stress loading on the aneurysmal wall. Detailed fluid structure interaction (FSI) in the presence and absence of ILT may help predict AAA rupture risk better. Two patients, with varied AAA geometries and ILT structures, were studied and compared in detail. The patient specific 3D geometries were reconstructed from CT scans, and uncoupled FSI approach was applied. Complex flow trajectories within the AAA lumen indicated a viable mechanism for the formation and growth of the ILT. The resulting magnitude and location of the peak wall stresses was dependent on the shape of the AAA, and the ILT appeared to reduce wall stresses for both patients. Accordingly, the inclusion of ILT in stress analysis of AAA is of importance and would likely increase the accuracy of predicting AAA risk of rupture.  相似文献   

8.
The intraluminal thrombus (ILT) commonly found within abdominal aortic aneurysm (AAA) may serve as a barrier to oxygen diffusion from the lumen to the inner layers of the aortic wall. The purpose of this work was to address this hypothesis and to assess the effects of AAA bulge diameter (dAAA) and ILT thickness (delta) on the oxygen flow. A hypothetical, three-dimensional, axisymmetric model of AAA containing ILT was created for computational analysis. Commercial software was utilized to estimate the volume flow of O2 per cell, which resulted in zero oxygen tension at the AAA wall. Solutions were generated by holding one of the two parameters fixed while varying the other. The supply of O2 to the AAA wall increases slightly and linearly with dAAA for a fixed delta. This slight increase is due to the enlarged area through which diffusion of O2 may take place. The supply of O2 was found to decrease quickly with increasing delta for a fixed dAAA due to the increased resistance to O2 transport by the ILT layer. The presence of even a thin, 3 mm ILT layer causes a diminished O2 supply (less than 4 x 10(-10) mumol/min/cell). Normally functioning smooth muscle cells require a supply of 21 x 10(-10) mumol/min/cell. Thus, our analysis serves to support our hypothesis that the presence of ILT alters the normal pattern of O2 supply to the AAA wall. This may lead to hypoxic cell dysfunction in the AAA wall, which may further lead to wall weakening and increased potential for rupture.  相似文献   

9.
Recent numerical studies of abdominal aortic aneurysm (AAA) suggest that intraluminal thrombus (ILT) may reduce the stress loading on the aneurysmal wall. Detailed fluid structure interaction (FSI) in the presence and absence of ILT may help predict AAA rupture risk better. Two patients, with varied AAA geometries and ILT structures, were studied and compared in detail. The patient specific 3D geometries were reconstructed from CT scans, and uncoupled FSI approach was applied. Complex flow trajectories within the AAA lumen indicated a viable mechanism for the formation and growth of the ILT. The resulting magnitude and location of the peak wall stresses was dependent on the shape of the AAA, and the ILT appeared to reduce wall stresses for both patients. Accordingly, the inclusion of ILT in stress analysis of AAA is of importance and would likely increase the accuracy of predicting AAA risk of rupture.  相似文献   

10.
Biomechanics and Modeling in Mechanobiology - In this study, the biomechanical role of intraluminal thrombus (ILT) in an abdominal aortic aneurysm (AAA) is investigated. The implications of ILT in...  相似文献   

11.
A mathematical approach of blood flow within an abdominal aortic aneurysm (AAA) with intraluminal thrombus (ILT) is presented. The macroscale formation of ILT is modeled as a growing porous medium with variable porosity and permeability according to values proposed in the literature. The model outlines the effect of a porous ILT on blood flow in AAAs. The numerical solution is obtained by employing a structured computational mesh of an idealized fusiform AAA geometry and applying the Galerkin weighted residual method in generalized curvilinear coordinates. Results on velocity and pressure fields of independent cases with and without ILT are presented and discussed. The vortices that develop within the aneurysmal cavity are studied and visualized as ILT becomes more condensed. From a mechanistic point of view, the reduction of bulge pressure, as ILT is thickening, supports the observation that ILT could protect the AAA from a possible rupture. The model also predicts a relocation of the maximum pressure region toward the zone proximal to the neck of the aneurysm. However, other mechanisms, such as the gradual wall weakening that usually accompany AAA and ILT formation, which are not included in this study, may offset this effect.  相似文献   

12.
BackgroundIntraluminal thrombus (ILT) formation plays a significant role in the progression of infrarenal abdominal aortic aneurysms (AAA). Potentially, as ILT thickness increases the availability of trace elements in the aneurysm wall could decrease thereby leading to oxidative stress and intensifying pro-inflammatory cytokine generation.AimTo determine if thrombus thickness is related to the concentration of trace elements in the wall of infrarenal AAA.Patients and methodsThe concentrations of trace elements in the wall of the aneurysm sack and ILT obtained from 19 consecutive patients during surgery for infrarenal AAA were determined using emission spectrometry.ResultsThe concentrations of magnesium, zinc, manganese, and lead in the wall of AAA were significantly greater than in the ILT. Only the concentration of copper was lower in the AAA wall compared with the thrombus. The concentration of calcium, phosphorus, zinc, lead, copper, and magnesium increased with ILT thickness. The concentrations of no other trace elements in the wall of AAA were found to be related to the ILT thickness.ConclusionsIntraluminal thrombus thickness is not associated with a lower concentration of trace elements in the wall of the infrarenal AAA. Thus, the intraluminal thrombus participates in the progression of AAA by mechanisms independent of trace element supply to the wall of the aneurysm sack.  相似文献   

13.
Abdominal aortic aneurysm (AAA) is the gradual weakening and dilation of the infrarenal aorta. This disease is progressive, asymptomatic, and can eventually lead to rupture--a catastrophic event leading to massive internal bleeding and possibly death. The mechanical environment present in AAA is currently thought to be important in disease initiation, progression, and diagnosis. In this study, we utilize porohyperelastic (PHE) finite element models (FEMs) to investigate how such modeling can be used to better understand the local biomechanical environment in AAA. A 3D hypothetical AAA was constructed with a preferential anterior bulge assuming both the intraluminal thrombus (ILT) and the AAA wall act as porous materials. A parametric study was performed to investigate how physiologically meaningful variations in AAA wall and ILT hydraulic permeabilities affect luminal interstitial fluid velocities and wall stresses within an AAA. A corresponding hyperelastic (HE) simulation was also run in order to be able to compare stress values between PHE and HE simulations. The effect of AAA size on local interstitial fluid velocity was also investigated by simulating maximum diameters (5.5 cm, 4.5 cm, and 3.5 cm) at the baseline values of ILT and AAA wall permeability. Finally, a cyclic PHE simulation was utilized to study the variation in local fluid velocities as a result of a physiologic pulsatile blood pressure. While the ILT hydraulic permeability was found to have minimal affect on interstitial velocities, our simulations demonstrated a 28% increase and a 20% decrease in luminal interstitial fluid velocity as a result of a 1 standard deviation increase and decrease in AAA wall hydraulic permeability, respectively. Peak interstitial velocities in all simulations occurred on the luminal surface adjacent to the region of maximum diameter. These values increased with increasing AAA size. PHE simulations resulted in 19.4%, 40.1%, and 81.0% increases in peak maximum principal wall stresses in comparison to HE simulations for maximum diameters of 35 mm, 45 mm, and 55 mm, respectively. The pulsatile AAA PHE FEM demonstrated a complex interstitial fluid velocity field the direction of which alternated in to and out of the luminal layer of the ILT. The biomechanical environment within both the aneurysmal wall and the ILT is involved in AAA pathogenesis and rupture. Assuming these tissues to be porohyperelastic materials may provide additional insight into the complex solid and fluid forces acting on the cells responsible for aneurysmal remodeling and weakening.  相似文献   

14.
In abdominal aortic aneurysm (AAA) simulation the patient-specific geometry of the object of interest is very often reconstructed from in vivo medical imaging such as CT scans. Such geometries represent a deformed configuration stressed by typical in vivo conditions. However, commonly, such structures are considered stress-free in simulation. In this contribution we sketch and compare two methods to introduce a physically meaningful stress/strain state to the obtained geometry for simulations in the finite strain regime and demonstrate the necessity of such prestressing techniques. One method is based on an inverse design analysis to calculate a stress-free reference configuration. The other method developed here is based on a modified updated Lagrangian formulation. Formulation of both methods is provided. Applicability and accurateness of both approaches are compared and evaluated utilizing fully three-dimensional patient-specific AAA structures in the finite strain regime.  相似文献   

15.
Intraluminal thrombus (ILT) is present in 75% of clinically-relevant abdominal aortic aneurysms (AAAs) yet, despite much research effort, its role in AAA biomechanics remains unclear. The aim of this work is to further evaluate the biomechanics of ILT and determine if different ILT morphologies have varying mechanical properties.  相似文献   

16.
An Abdominal Aortic Aneurysm (AAA) is a permanent focal dilatation of the abdominal aorta at least 1.5 times its normal diameter. The criterion of maximum diameter is still used in clinical practice, although numerical studies have demonstrated the importance of biomechanical factors for rupture risk assessment. AAA phantoms could be used for experimental validation of the numerical studies and for pre-intervention testing of endovascular grafts. We have applied multi-material 3D printing technology to manufacture idealized AAA phantoms with anisotropic mechanical behavior. Different composites were fabricated and the phantom specimens were characterized by biaxial tensile tests while using a constitutive model to fit the experimental data. One composite was chosen to manufacture the phantom based on having the same mechanical properties as those reported in the literature for human AAA tissue; the strain energy and anisotropic index were compared to make this choice. The materials for the matrix and fibers of the selected composite are, respectively, the digital materials FLX9940 and FLX9960 developed by Stratasys. The fiber proportion for the composite is equal to 0.15. The differences between the composite behavior and the AAA tissue are small, with a small difference in the strain energy (0.4%) and a maximum difference of 12.4% in the peak Green strain ratio. This work represents a step forward in the application of 3D printing technology for the manufacturing of AAA phantoms with anisotropic mechanical behavior.  相似文献   

17.
18.
Abdominal aortic aneurysm (AAA) is perma-nent and localized dilation of the abdominal aorta. Intraluminal thrombus (ILT) is involved in evolution and rupture of AAA. Complex biological processes associated with AAA include oxidative stress, proteolysis, neovascularization, aortic inflammation, cell death, and extracellular matrix breakdown. Biomarkers of growth and AAA rupture could give a more nuanced indication for surgery, unveil novel pathogenic pathways, and open possibilities for pharmacological inhibition of growth. Differential analysis of metabolites released by normal and pathological arteries in culture may help to find molecules that have a high probability of later being found in plasma and start signaling processes or be useful diagnostic/prognostic markers. We used a LC-QTOF-MS metabolomic approach to analyze metabolites released by human ILT (divided into luminal and abluminal layers), aneurysm wall (AW), and healthy wall (HW). Statistical analysis was used to compare luminal with abluminal ILT layer, ILT with AW, and AW with HW to select the metabolites exchanged between tissue and external medium. Identified compounds are related to inflammation and oxidative stress and indicate the possible role of fatty acid amides in AAA. Some metabolites (e.g., hippuric acid) had not been previously associated to aneurysm, others (fatty acid amides) have arisen, indicating a very promising line of research.  相似文献   

19.

Introduction

Thrombus ages, defined as four relative age phases, are related to different compositions of the intraluminal thrombus (ILT) in the abdominal aortic aneurysm (AAA) (Tong et al., 2011b). Experimental studies indicate a correlation between the relative thrombus age and the strength of the thrombus-covered wall.

Methods

On 32 AAA samples we performed peeling tests with the aim to dissect the material (i) through the ILT thickness, (ii) within the individual ILT layers and (iii) within the aneurysm wall underneath the thrombus by using two extension rates (1 mm/min, 1 mm/s). Histological investigations and mass fraction analysis were performed to characterize the dissected morphology, to determine the relative thrombus age, and to quantify dry weight percentages of elastin and collagen in the AAA wall.

Results

A remarkably lower dissection energy was needed to dissect within the individual ILT layers and through the thicknesses of old thrombi. With increasing ILT age the dissection energy of the underlying intima–media composite continuously decreased and the anisotropic dissection properties for that composite vanished. The quantified dissection properties were rate dependent for both tissue types (ILT and wall). Histology showed that single fibrin fibers or smaller protein clots within the ILT generate smooth dissected surfaces during the peeling. There was a notable decrease in mass fraction of elastin within the thrombus-covered intima–media composite with ILT age, whereas no significant change was found for that of collagen.

Conclusions

These findings suggest that intraluminal thrombus aging leads to a higher propensity of dissection for the ILT and the intima–media composite of the aneurysmal wall.  相似文献   

20.
Very limited information is currently available on the constitutive modeling of the tensile response of articular cartilage and its dynamic modulus at various loading frequencies. The objectives of this study were to (1) formulate and experimentally validate a constitutive model for the intrinsic viscoelasticity of cartilage in tension, (2) confirm the hypothesis that energy dissipation in tension is less than in compression at various loading frequencies, and (3) test the hypothesis that the dynamic modulus of cartilage in unconfined compression is dependent upon the dynamic tensile modulus. Experiment 1: Immature bovine articular cartilage samples were tested in tensile stress relaxation and cyclical loading. A proposed reduced relaxation function was fitted to the stress-relaxation response and the resulting material coefficients were used to predict the response to cyclical loading. Adjoining tissue samples were tested in unconfined compression stress relaxation and cyclical loading. Experiment 2: Tensile stress relaxation experiments were performed at varying strains to explore the strain-dependence of the viscoelastic response. The proposed relaxation function successfully fit the experimental tensile stress-relaxation response, with R2 = 0.970+/-0.019 at 1% strain and R2 = 0.992+/-0.007 at 2% strain. The predicted cyclical response agreed well with experimental measurements, particularly for the dynamic modulus at various frequencies. The relaxation function, measured from 2% to 10% strain, was found to be strain dependent, indicating that cartilage is nonlinearly viscoelastic in tension. Under dynamic loading, the tensile modulus at 10 Hz was approximately 2.3 times the value of the equilibrium modulus. In contrast, the dynamic stiffening ratio in unconfined compression was approximately 24. The energy dissipation in tension was found to be significantly smaller than in compression (dynamic phase angle of 16.7+/-7.4 deg versus 53.5+/-12.8 deg at 10(-3) Hz). A very strong linear correlation was observed between the dynamic tensile and dynamic compressive moduli at various frequencies (R2 = 0.908+/-0.100). The tensile response of cartilage is nonlinearly viscoelastic, with the relaxation response varying with strain. A proposed constitutive relation for the tensile response was successfully validated. The frequency response of the tensile modulus of cartilage was reported for the first time. Results emphasize that fluid-flow dependent viscoelasticity dominates the compressive response of cartilage, whereas intrinsic solid matrix viscoelasticity dominates the tensile response. Yet the dynamic compressive modulus of cartilage is critically dependent upon elevated values of the dynamic tensile modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号