首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A series of structurally novel stearoyl-CoA desaturase-1 (SCD-1) inhibitors has been identified by optimizing a hit from our corporate library. Preliminary structure–activity relationship (SAR) studies led to the discovery of the highly potent and orally bioavailable thiazole-based SCD-1 inhibitor, 3-(2-hydroxyethoxy)-4-methoxy-N-[5-(3-trifluoromethylbenzyl)thiazol-2-yl]benzamide (23a).  相似文献   

2.
Gastrin-releasing peptide receptors (GRP-Rs, also known as bombesin 2 receptors) are overexpressed in a variety of human cancers, including prostate cancer, and therefore they represent a promising target for in vivo imaging of tumors using positron emission tomography (PET). Structural modifications of the non-peptidic GRP-R antagonist PD-176252 ((S)-1a) led to the identification of the fluorinated analog (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy)pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide ((S)-1m) that showed high affinity and antagonistic properties for GRP-R. This antagonist was stable in rat plasma and towards microsomal oxidative metabolism in vitro. (S)-1m was successfully radiolabeled with fluorine-18 through a conventional radiochemistry procedure. [18F](S)-1m showed high affinity and displaceable interaction for GRP-Rs in PC3 cells in vitro.  相似文献   

3.
Starting from a known piperazine-based SCD-1 inhibitor, we obtained more potent benzoylpiperidine analogs. Optimization of the structure of the benzoylpiperidine-based SCD-1 inhibitors resulted in the identification of 6-[4-(2-methylbenzoyl)piperidin-1-yl]pyridazine-3-carboxylic acid (2-hydroxy-2-pyridin-3-yl-ethyl)amide (24) which showed strong inhibitory activity against both human and murine SCD-1. In addition, this compound exhibited good oral bioavailability and demonstrated plasma triglyceride lowering effects in Zucker fatty rats in a dose-dependent manner after a 7-day oral administration (qd).  相似文献   

4.
N-(Pyren-1-yl)-(3R,4S)-4-[(1S,2R)-1,2,3-trihydroxypropyl]pyrrolidin-3-ol (4) was obtained in 36% yield from 3-deoxy-3-C-formyl-1,2:5,6-di-O-isopropylidene-α-d-allofuranose (3) by combined hydrolysis and aminoalkylation reactions with 1-aminopyrene in a one-pot reaction. Cleavage reactions of the exocyclic triol chain in 4 with NaIO4 and NaBH4 resulted in iminosugars 7 and 8, which are analogues of the furanose forms of 2-deoxy-d-allose and of 2-deoxy-d-ribose, the latter analogue N-(pyren-1-yl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol (8) being formed in 83% yield.  相似文献   

5.
Described herein is the initial optimization of (+/−) N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide (1), a hit discovered in a high throughput screen run against the NS5B polymerase enzyme of the hepatitis C virus. This effort resulted in the identification of (S)-N-sec-butyl-6-((R)-3-(4-(trifluoromethoxy)benzylcarbamoyl)-4-(4-(trifluoromethoxy)phenylsulfonyl)piperazin-1-yl)pyridazine-3-carboxamide (2), that displayed potent replicon activities against HCV genotypes 1b and 1a (EC50 1b/1a = 7/89 nM).  相似文献   

6.
A novel series of selective negative allosteric modulators (NAMs) for metabotropic glutamate receptor 5 (mGlu5) was discovered from an isothiazole scaffold. One compound of this series, (1R,2R)-N-(4-(6-isopropylpyridin-2-yl)-3-(2-methyl-2H-indazol-5-yl)isothiazol-5-yl)-2-methylcyclopropanecarboxamide (24), demonstrated satisfactory pharmacokinetic properties and, following oral dosing in rats, produced dose-dependent and long-lasting mGlu5 receptor occupancy. Consistent with the hypothesis that blockade of mGlu5 receptors will produce analgesic effects in mammals, compound 24 produced a dose-dependent reduction in paw licking responses in the formalin model of persistent pain.  相似文献   

7.
Five 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine)-d-glucopyranoses (lipophilic, muramoyl dipeptide analogs) were synthesized from benzyl 2-(benzyloxycarbonylamino)-3-O-(d-1-carboxyethyl)-2-deoxy-5,6-O-isopropylidene-β-dglucopyranoside (1). Methanesulfonylation of 3, derived from the methyl ester of 1 by O-deisopropylidenation, gave the 6-methanesulfonate (4). (Tetrahydropyran-2-yl)ation of 4 gave benzyl 2-(benzyloxycarbonylamino)-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-6-O-(methylsulfonyl)-5-O-(tetrahydropyran-2-yl)-β-d- glucofuranoside, which was treated with sodium azide to give the corresponding 6-azido derivative (6). Condensation of benzyl 6-amino-2-(benzyloxycarbonyl-amino)-2,6-dideoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-5-O-(tetrahydropyran-2-yl)-β-d-glucofuranoside, derived from 6 by reduction, with the activated esters of octanoic, hexadecanoic, and eicosanoic acid gave the corresponding 6-N-fatty acyl derivatives (8–10). Coupling of the 2-amino derivatives, obtained from compounds 8, 9, and 10 by catalytic reduction, with the activated esters of the fatty acids, gave the 2,6-(diacylamino)-2,6-dideoxy derivatives (11–15). Condensation of the acids, formed from 11–15 by de-esterification, with the benzyl ester of l-alanyl-d-isoglutamine, and subsequent hydrolysis, afforded benzyl 2,6-di(acylamino)-2,6-dideoxy-3-O-(d-2-propanoyl-l-alanyl-d-isoglutamine benzyl ester)-β-d-glucofuranosides. Hydrogenation of the dipeptide derivatives thus obtained gave the five lipophilic analogs of 6-amino-6-deoxymuramoyl dipeptide, respectively, in good yields.  相似文献   

8.
A series of 3(R)-aminopyrrolidine derivatives were designed and synthesized for JAK1-selective inhibitors through the modification of tofacitinib’s core structure, (3R,4R)-3-amino-4-methylpiperidine. From the new core structures, we selected (R)-N-methyl-N-(pyrrolidin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine as a scaffold for further SAR studies. From biochemical enzyme assays and liver microsomal stability tests, (R)-3-(3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)pyrrolidin-1-yl)-3-oxopropanenitrile (6) was chosen for further in vivo test through oral administration. Compound 6 showed improved selectivity for JAK1 compared to that of tofacitinib (IC50 11, 2.4?×?102, 2.8?×?103, and 1.1?×?102?nM for JAK1, JAK2, JAK3, and TYK2, respectively). In CIA and AIA model tests, compound 6 exhibited similar efficacy to tofacitinib citrate.  相似文献   

9.
Herein we report the identification and evaluation of a novel series of (E)-3-(1-cyclohexyl-1H-pyrazol-3-yl)-2-methylacrylic acid derivatives identified from a deannulation study performed on the reported benzimidazole NS5B inhibitor, 1. This resulted in the identification of (E)-3-(2-(4-((4′-cyano-4-(4-hydroxypiperidine-1-carbonyl)biphenyl-2-yl)methoxy)phenyl)-1-cyclohexyl-1H-imidazol-4-yl)-2-methylacrylic acid (11) as a potent inhibitor of NS5B. Potential pathways for the further optimization of this series are suggested.  相似文献   

10.
Addition of 5-bromo-2′,3′-O-isopropylidene-5′-O-trityluridine (2) in pyridine to an excess of 2-lithio-1,3-dithiane (3) in oxolane at 78° gave (6R)-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene -5′-O-trityluridine (4), (5S,6S)-5-bromo-5,6-dihydro-(1,3-dithian-2-yl)-2′,3′-O-isopropylidene-5′-O-trityluridine (5), and its (5R) isomer 6 in yields of 37, 35, and 10%, respectively. The structure of 4 was proved by Raney nickel desulphurization to (6S)-5,6-dihydro-2′,3′-O-isopropylidene-6-methyl-5′-O-trityluridine (7) and by acid hydrolysis to give D-ribose and (6R)-5,6-dihydro-6-(1,3-dithian-2-yl)uracil (9). Treatment of 4 with methyl iodide in aqueous acetone gave a 30&%; yield of (R,S)-5,6-dihydro-6-formyl-2′,3′-O-isopropylidene-5′-O-trityl-uridine (10), characterized as its semicarbazone 11. Both 5 and 6 gave 4 upon brief treatment with Raney nickel. Both 5 and 6 also gave 6-formyl-2′,3′-O-isopropylidene-5′- O-trityluridine (12) in ~41%; yield when treated with methyl iodide in aqueous acetone containin- 10%; dimethyl sulfoxide. A by-product, identified as the N-methyl derivative (13) of 12 was also formed in yields which varied with the amount of dimethyl sulfoxide used. Reduction of 12 with sodium borohydride, followed by deprotection, afforded 6-(hydroxymethyl)uridine (17), characterized by hydrolysis to the known 6-(hydroxymethyl)uracil (18). Knoevenagel condensation of a mixture of the aldehydes 12 and 13 with ethyl cyanoacetate yielded 38%; of E- (or Z-)6-[(2-cyano-2-ethoxycarbonyl)ethylidene]-2′,3′-O-isopropylidene-5′-O-trityluridine (19) and 10%; of its N-methyl derivative 20. Hydrogenation of 19 over platinum oxide in acetic anhydride followed by deprotection gave R (or S)-6-(3-amino-2-carboxypropyl)uridine (23).  相似文献   

11.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

12.
Condensation of salicylic aldehyde with 8-aminoquinoline afforded (ONN)-tridentate ligand 2-N-(quinoline-8-yl)iminomethylphenol (1), which was obtained as a crystalline solid for the first time and characterized by X-ray diffraction. Reaction between 1 and phenyltrichlorosilane in the presence of triethylamine results in the formation of the 1:1 chelate complex dichloro-[2-N-(quinoline-8-yl)imino-methylphenolato]-phenylsilane (2a) bearing a hexacoordinate silicon atom. The crystal structure of 2aCHCl3 reveals a rare coordination pattern: Although carrying two chlorine atoms, the hexacoordinate Si atom coordinates the tridentate ligand’s imine N atom in the trans position to the phenyl group. Silylation of 1 with hexamethyldisilazane and synthesis of dichloro-[2-N-(quinoline-8-yl)iminomethylphenolato]-methylsilane (2b) yielded few crystals of [2-N-(quinoline-8-yl)iminomethylphenolato]-salicylaldiminato-methylsiliconium chloride (2b′) as byproduct. 2b′ is the first structurally characterized main group element complex of salicylaldimine. This bidentate ligand exhibits an unusually strong N → Si coordination.  相似文献   

13.
Addition of 2,2′-anhydro-[1-(3-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)uracil] (1) to excess 2-litho-1,3-dithiane (2)in oxolane at ?78° gave 2-(1,3-dithian-2-yl)-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)pyrimidinone (3), O2,2′-anhydro-5,6-di-hydro-6-(S)-(1,3-dithian-2-yl)-5′-O-trityluridine (4), and 2-(1,4-dihydroxybutyl)-1,3-dithiane (5) in yields of 15, 30, and 10% respectively. The structure of 3 was proved by its hydrolysis in acid to give 2-(1,3-dithian-2-yl)-4-pyrimidinone (6) and arabinose, and by desulfurization with Raney nickel to yield the known 2-methyl-1-(5-O-trityl-β-D-arabinofuranosyl)-4(1H)-pyrimidinone (7). Detritylation of 3 without glycosidic cleavage could only be effected by prior acetylation to 1-(2,3-di-O-acetyl-5-O-trityl-β-D-arabinofuranosyl)-2-(1,3-dithian-2-yl)-4(1H)-pyrimidinone (8) which, after treatment with acetic acid at room temperature for 65 h followed by the action of sodium methoxide gave 2-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyl-4(1H)-pyrimidinone (10) in 45% yield. Detritylation of 4 in boiling acetic acid gave 5,6-dihydro-6-(S)-(1,3-dithian-2-yl)-1-β-D-arabinofuranosyluracil (12) and 3-[(S)-1-(1,3-dithian-2-yl)]propionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (13) in 10 and 90% yields, respectively. When 12 was kept in water or methanol for 7 days, quantitative conversion into 13 occurred. Acid hydrolysis of 12 afforded arabinose and 5,6-di-hydro-6-(1,3-dithian-2-yl)uracil (14), which was desulfurized with Raney nickel to the known 5,6-dihydro-6-methyluracil (15). Treatment of 13 with trifluoroacetic anhydride-pyridine yielded 77% of the cyano derivative 17. Similar dehydration of 3-(R)-1-methylpropionamido-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxalidinone (18), obtained by desulfurization of 13, gave 60% of the nitrile 19. Hydrogenation of 19 over platinum oxide in acetic anhydride gave the acetamide derivative 20 in 95% yield. Nitrobenzoylation of 13 gave 3-[(S)-1-(1,3-dithian-2-yl)]cyanomethyl-3,5-di-O-p-nitrobenzoyl-(1,2-dideoxy-β-D-arabinofurano)-[1,2-d]-2-oxazolidinone (22), which was converted in 37% yield by treatment with methyl iodide in dimethyl sulfoxide into the aldehyde 24, characterized as the semicarbazone 25. The purification of 5 and its characterization as 2-(1,4-di-O-p-nitrobenzoylbutyl)-1,3-dithiane (27) is described.  相似文献   

14.
Aminopyrimidine 2 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-cyclopropylpyrimidin-2-amine) emerged from a high throughput screen as a novel 5-HT1A agonist. This compound showed moderate potency for 5-HT1A in binding and functional assays, as well as moderate metabolic stability. Implementation of a strategy for improving metabolic stability by lowering the lipophilicity (c Log D) led to identification of methyl ether 31 (4-(1-(2-(1H-indol-3-yl)ethyl)piperidin-3-yl)-N-(2-methoxyethyl)pyrimidin-2-amine) as a substantially improved compound within the series.  相似文献   

15.
Novel heteroaryl-containing benzamide derivatives were synthesized and screened using an in vitro assay measuring increases in glucose uptake and glucokinase activity stimulated by 10 mM glucose in rat hepatocytes. From a library of synthesized compounds, 3-(4-methanesulfonylphenoxy)-N-[1-(2-methoxy-ethoxymethyl)-1H-pyrazol-3-yl]-5-(3-methyl pyridin-2-yl)-benzamide (19e) was identified as a potent glucokinase activator with assays demonstrating an EC50 of 315 nM and the induction of a 2.23 fold increase in glucose uptake. Compound 19e exhibited a glucose AUC reduction of 32% (50 mg/kg) in an OGTT study with C57BL/6J mice compared to 28% for metformin (300 mg/kg). Single treatment of the compound in C57BL/J6 and ob/ob mice elicited basal glucose lowering activity, while in a two-week repeated dose study with ob/ob mice, the compound significantly decreased blood glucose levels with no evidence of hypoglycemia risk. In addition, 19e exhibited favorable pharmacokinetic parameters in mice and rats and excellent safety margins in liver and testicular toxicity studies. Compound 19e was therefore selected as a development candidate for the potential treatment of type 2 diabetes.  相似文献   

16.
N-Aryl-3-(indol-3-yl)propanamides were synthesized and their immunosuppressive activities were evaluated. This study highlighted the promising potency of 3-[1-(4-chlorobenzyl)-1H-indol-3-yl]-N-(4-nitrophenyl)propanamide 15 which exhibited a significant inhibitory activity on murine splenocytes proliferation assay in vitro and on mice delayed-type hypersensitivity (DTH) assay in vivo.  相似文献   

17.
Reported herein is the design, synthesis, and pharmacologic evaluation of a class of TRPV1 antagonists constructed on a N1-(isoquinolin-5-yl)-N2-phenylpyrrolidine-1,2-dicarboxamide platform that evolved from a 5-aminoisoquinoline urea lead. Advancing the SAR of this series led to the eventual identification of 3b, comprising a p-Br substituted phenyl. In a TRPV1 functional assay, using cells expressing recombinant human TRPV1 channels, 3b displayed potent antagonism activated by capsaicin (IC50 = 0.084 μM) and protons (IC50 = 0.313 μM). In the preliminary analgesic and body temperature tests, 3b exhibited good efficacy in capsaicin-induced and heat-induced pain models and without hyperthermia side-effect. On the basis of its superior profiles, 3b could be considered as the lead candidate for the further development of antinociceptive drugs.  相似文献   

18.
Herein we report the identification of (+)-N-(2-((1H-pyrazol-1-yl)methyl)-3-((1R,3r,5S)-6′-fluoro-8-azaspiro[bicyclo[3.2.1]octane-3,1′-isochroman]-8-yl)propyl)-N-[3H]-methylacetamide {[3H]PF-7191 [(+)-11]} as a promising radiotracer for the nociceptin opioid peptide (NOP) receptor. (+)-11 demonstrated high NOP binding affinity (Ki = 0.1 nM), excellent selectivity over other opioid receptors (>1000×) and good brain permeability in rats (Cb,u/Cp,u = 0.29). Subsequent characterization of [3H](+)-11 showed a high level of specific binding and a brain bio-distribution pattern consistent with known NOP receptor expression. Furthermore, the in vivo brain binding of [3H](+)-11 in rats was inhibited by a selective NOP receptor antagonist in a dose–responsive manner. This overall favorable profile indicated that [3H](+)-11 is a robust radiotracer for pre-clinical in vivo receptor occupancy (RO) measurements and a possible substrate for carbon-11 labeling for positron emission tomography (PET) imaging in higher species.  相似文献   

19.
SAR exploration from an initial hit, (S)-N-(2-cyclohexenylethyl)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)benzamide (1), identified using our proprietary automated ligand identification system (ALIS),1 has led to a novel series of selective hepatitis C virus (HCV) NS5B polymerase inhibitors with improved in vitro potency as exemplified by (S)-2-fluoro-6-(2-(1-hydroxy-3-phenylpropan-2-ylamino)-2-oxoethoxy)-N-isopentyl-N-methylbenzamidecarboxamide (41) (IC50 = 0.5 μM). The crystal structure of an analogue (44) was solved and provided rationalization of the SAR of this series, which binds in a distinct manner in the palm domain of NS5B, consistent with biochemical analysis using enzyme mutant variants. These data warrant further lead optimization efforts on this novel series of non-nucleoside inhibitors targeting the HCV polymerase.  相似文献   

20.
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure–activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 (18F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([18F]-14) in high radiochemical yield and specific activity. In vivo studies of [18F]-14 revealed this agent as a promising probe for molecular imaging of glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号