首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling.  相似文献   

4.
Li H  Tiwari SB  Hagen G  Guilfoyle TJ 《Plant physiology》2011,155(3):1252-1263
Auxin/indole-3-acetic acid (Aux/IAA) proteins function as repressors of auxin response gene expression when auxin concentrations in a cell are low. At elevated auxin concentrations, these repressors are destroyed via the ubiquitin-proteasome pathway, resulting in derepression/activation of auxin response genes. Most Aux/IAA repressors contain four conserved domains, with one of these being an active, portable repression domain (domain I) and a second being an auxin-dependent instability domain (domain II). Here, we have analyzed the effects of amino acid substitutions in the repression domain of selected Aux/IAA proteins. We show that stabilized versions of Aux/IAA proteins with amino acid substitutions in domain I display contrasting phenotypes when expressed in transformed Arabidopsis (Arabidopsis thaliana) plants. An alanine-for-leucine substitution in the LxLxL (where L is leucine and x is another amino acid) repression domain of IAA3, IAA6, or IAA19 confers enhanced auxin response gene expression and "high-auxin" phenotypes when expressed from the 35S or IAA19 promoter (as tested with IAA19) in transformed Arabidopsis plants. In marked contrast, a single alanine-for-leucine substitution in domain I of IAA12 or IAA17 confers repression of auxin response genes and "low-auxin" phenotypes. These results point to intrinsic differences in the repression domain(s) of IAA proteins and suggest that some IAA proteins have stronger or more complex repression domains than others.  相似文献   

5.
6.
7.
8.
Degradation of the auxin response factor ARF1   总被引:1,自引:0,他引:1  
Auxin-mediated gene expression is largely controlled through a family of DNA-binding proteins known as auxin response factors (ARF). Previous studies on the role of proteolytic regulation in auxin signaling have focused on degradation of their interacting partner, the Aux/IAA proteins. Aux/IAA family members with domain II sequences are rapidly degraded, show auxin-enhanced degradation rates, and interact with the related F-box proteins TIR1 and AFB1-3, which indicates that they are ubiquitylated by a CUL1-dependent E3 ligase. To date, limited data have been generated regarding degradation of ARFs. Here, we focus on the degradation rate of one ARF family member, Arabidopsis thaliana ARF1, and find that the half-lives of N-terminally HA-tagged ARF1 and C-terminally luciferase-tagged ARF1 are both approximately 3–4 h. This half-life appears to be conferred by a component of the middle region (MR), and degradation of the luciferase fusion with the MR is more rapid when the fusion includes an additional nuclear localization signal. ARF1 degradation is proteasome-dependent and rates are not altered in a CUL1 mutant background, suggesting that this ARF is targeted for proteasomal degradation via an alternative set of machinery to that used for Aux/IAA degradation. Consistent with this, exogenous indole acetic acid does not affect the degradation of ARF1. Given increasing evidence that the relative ratio of Aux/IAAs to ARFs rather than the absolute quantity within the cell appears to be the mode through which auxin signaling is modulated, this half-life is likely to be biologically relevant.  相似文献   

9.
IAA17/AXR3: biochemical insight into an auxin mutant phenotype   总被引:22,自引:0,他引:22       下载免费PDF全文
The Aux/IAA genes are rapidly and specifically induced by the plant hormone auxin. The proteins encoded by this gene family are short-lived nuclear proteins that are capable of homodimerizing and heterodimerizing. Molecular, biochemical, and genetic data suggest that these proteins are involved in auxin signaling. The pleiotropic morphological phenotype and altered auxin responses of the semidominant axr3-1 mutant of Arabidopsis result from a single amino acid change in the conserved domain II of the Aux/IAA protein IAA17. Here, we show that the biochemical effect of this gain-of-function mutation is to increase the half-life of the iaa17/axr3-1 protein by sevenfold. Intragenic mutations that suppress the iaa17/axr3-1 phenotype have been described. The iaa17/axr3-1R3 revertant contains a second site mutation in domain I and the iaa17/axr3-1R2 revertant contains a second site mutation in domain III. Transient expression assays show that the mutant forms of IAA17/AXR3 retain the ability to accumulate in the nucleus. Using the yeast two hybrid system, we show that the iaa17/axr3-1 mutation does not affect homodimerization. However, the iaa17/axr3-1 revertants counteract the increased levels of iaa17/axr3-1 protein by decreasing the capacity of the mutant protein to homodimerize. Interestingly, heterodimerization of the revertant forms of IAA17/AXR3 with IAA3/SHY2, another Aux/IAA protein, and ARF1 or ARF5/MP proteins is affected only by changes in domain III. Collectively, the results provide biochemical evidence that the revertant mutations in the IAA17/AXR3 gene affect the capacity of the encoded protein to dimerize with itself, other members of the Aux/IAA protein family, and members of the ARF protein family. By extension, these findings may provide insight into the effects of analogous mutations in other members of the Aux/IAA gene family.  相似文献   

10.
Degradation of Aux/IAA proteins which are triggered by the ubiquitin ligase complex containing the auxin F-box receptors (AFBs), is thought to be the primary reaction of auxin signaling. Upon auxin perception, AFBs bind domain II of Aux/IAA proteins that is conserved in most of the 29 family members in Arabidopsis. However, IAA20 and IAA30 lack domain II. Furthermore, IAA31, which forms a single clade with IAA20 and IAA30 in Aux/IAA protein family, has a partially conserved domain II, which contains an amino acid substitution that would cause a dominant mutation of Aux/IAA genes. It has been shown that the half-lives of these proteins are much longer than those of the canonical Aux/IAA proteins. We generated overexpression lines (OXs) of IAA20 , IAA30 and IAA31 by the use of cauliflower mosaic virus 35S promoter to better understand the molecular function of atypical Aux/IAA proteins in Arabidopsis. OXs of the three genes exhibited similar auxin-related aberrant phenotypes, with IAA20 OX showing the most severe defects: Some of them showed a semi-dwarf phenotype; gravitropic growth orientation was often affected in hypocotyl and root; vasculature of cotyledons was malformed; the primary root stopped growing soon after germination because of collapse of root apical meristem. IAA 20 and IAA30 were early auxin inducible, but IAA31 was not. These results showed that the wild-type genes of the three Aux/IAAs could disturb auxin physiology when ectopically overexpressed.  相似文献   

11.
The auxin/indoleacetic acid (Aux/IAA) proteins are negative regulators of the auxin response factors (ARFs) that regulate expression of auxin-responsive genes. The Aux/IAA proteins have four conserved domains. Domain II is responsible for the rapid degradation of these proteins. Degradation of the Aux/IAA proteins, mediated by a SCF(TIR1) E3 ubiquitin protein ligase complex, is critical for auxin-regulated gene expression. Using a steroid-hormone-inducible system, we had previously shown that a protein-stability-enhancing mutation in domain II of IAA1 (iaa1) impaired diverse auxin responses. Inhibition of hypocotyl elongation, leaf expansion, and stem elongation by overexpression of iaa1 suggested that cell enlargement and/or cell division might be affected. We here examined the effects of the domain II mutation on cellular anatomy using light microscopy. Our results show that overexpression of iaa1 in Arabidopsis significantly reduced cell length and cell number and affected cell shape in inflorescences and leaves in a dexamethasone (DEX)-dependent manner. These results suggest that IAA1 might be involved in cell elongation as well as in cell division in the aerial parts of Arabidopsis plants. In addition, the formation of both phloem and xylem in leaves and stems was also impaired in a DEX-dependent manner, indicating a potential involvement of IAA1 in vascular development.  相似文献   

12.
Aux/IAA proteins contain a potent transcriptional repression domain   总被引:21,自引:0,他引:21  
  相似文献   

13.
14.
15.
The AXR6 gene is required for auxin signaling in the Arabidopsis embryo and during postembryonic development. One of the effects of auxin is to stimulate degradation of the Aux/IAA auxin response proteins through the action of the ubiquitin protein ligase SCF(TIR1). Here we show that AXR6 encodes the SCF subunit CUL1. The axr6 mutations affect the ability of mutant CUL1 to assemble into stable SCF complexes resulting in reduced degradation of the SCF(TIR1) substrate AXR2/IAA7. In addition, we show that CUL1 is required for lateral organ initiation in the shoot apical meristem and the inflorescence meristem. These results indicate that the embryonic axr6 phenotype is related to a defect in SCF function and accumulation of Aux/IAA proteins such as BDL/IAA12. In addition, we show that CUL1 has a role in auxin response throughout the life cycle of the plant.  相似文献   

16.
17.
Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize diversity in degradation behaviors among IAA|receptor pairs, we engineered auxin-induced degradation of plant IAA proteins in yeast (Saccharomyces cerevisiae). We found that IAA degradation dynamics vary widely, depending on which receptor is present, and are not encoded solely by the degron-containing domain II. To facilitate this and future studies, we identified a mathematical model able to quantitatively describe IAA degradation behavior in a single parameter. Together, our results demonstrate the remarkable tunability conferred by specific configurations of the auxin response pathway.  相似文献   

18.
19.
20.
Auxin receptors: a new role for F-box proteins   总被引:15,自引:0,他引:15  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号