首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Nonhost resistance (NHR) provides immunity to all members of a plant species against all isolates of a microorganism that is pathogenic to other plant species. Three Arabidopsis thaliana PEN (penetration deficient) genes, PEN1, 2 and 3 have been shown to provide NHR against the barley pathogen Blumeria graminis f. sp. hordei at the prehaustorial level. Arabidopsis pen1-1 mutant lacking the PEN1 gene is penetrated by the hemibiotrophic oomycete pathogen Phytophthora sojae, the causal organism of the root and stem rot disease in soybean. We investigated if there is any novel nonhost resistance mechanism in Arabidopsis against the soybean pathogen, P. sojae. RESULTS: The P. sojae susceptible (pss) 1 mutant was identified by screening a mutant population created in the Arabidopsis pen1-1 mutant that lacks penetration resistance against the non adapted barley biotrophic fungal pathogen, Blumeria graminis f. sp. hordei. Segregation data suggested that PEN1 is not epistatic to PSS1. Responses of pss1 and pen1-1 to P. sojae invasion were distinct and suggest that PSS1 may act at both pre- and post-haustorial levels, while PEN1 acts at the pre-haustorial level against this soybean pathogen. Therefore, PSS1 encodes a new form of nonhost resistance. The pss1 mutant is also infected by the necrotrophic fungal pathogen, Fusarium virguliforme, which causes sudden death syndrome in soybean. Thus, a common NHR mechanism is operative in Arabidopsis against both hemibiotrophic oomycetes and necrotrophic fungal pathogens that are pathogenic to soybean. However, PSS1 does not play any role in immunity against the bacterial pathogen, Pseudomonas syringae pv. glycinea, that causes bacterial blight in soybean. We mapped PSS1 to a region very close to the southern telomere of chromosome 3 that carries no known disease resistance genes. CONCLUSIONS: The study revealed that Arabidopsis PSS1 is a novel nonhost resistance gene that confers a new form of nonhost resistance against both a hemibiotrophic oomycete pathogen, P. sojae and a necrotrophic fungal pathogen, F. virguliforme that cause diseases in soybean. However, this gene does not play any role in the immunity of Arabidopsis to the bacterial pathogen, P. syringae pv. glycinea, which causes bacterial blight in soybean. Identification and further characterization of the PSS1 gene would provide further insights into a new form of nonhost resistance in Arabidopsis, which could be utilized in improving resistance of soybean to two serious pathogens.  相似文献   

2.
Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and 196T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.  相似文献   

3.
The plant apoplast is the intercellular space that surrounds plant cells, in which metabolic and physiological processes relating to cell wall biosynthesis, nutrient transport, and stress responses occur. The apoplast is also the primary site of infection for hemibiotrophic pathogens such as P. syringae, which obtain nutrients directly from apoplastic fluid. We have used apoplastic fluid extracted from healthy tomato leaves as a growth medium for Pseudomonas spp. in order to investigate the role of apoplastic nutrients in plant colonization by Pseudomonas syringae. We have confirmed that apoplast extracts mimic some of the environmental and nutritional conditions that bacteria encounter during apoplast colonization by demonstrating that expression of the plant-induced type III protein secretion pathway is upregulated during bacterial growth in apoplast extracts. We used a modified phenoarray technique to show that apoplast-adapted P. syringae pv. tomato DC3000 expresses nutrient utilization pathways that allow it to use sugars, organic acids, and amino acids that are highly abundant in the tomato apoplast. Comparative analyses of the nutrient utilization profiles of the genome-sequenced strains P. syringae pv. tomato DC3000, P. syringae pv. syringae B728a, P. syringae pv. phaseolicola 1448A, and the unsequenced strain P. syringae pv. tabaci 11528 with nine other genome-sequenced strains of Pseudomonas provide further evidence that P. syringae strains are adapted to use nutrients that are abundant in the leaf apoplast. Interestingly, P. syringae pv. phaseolicola 1448A lacks many of the nutrient utilization abilities that are present in three other P. syringae strains tested, which can be directly linked to differences in the P. syringae pv. phaseolicola 1448A genome.  相似文献   

4.
Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.  相似文献   

5.
It has been reported in several pathosystems that disease resistance can vary in leaves at different stages. However, how general this leaf stage-associated resistance is, and the molecular mechanism(s) underlying it, remain largely unknown. Here, we investigated the effect of leaf stage on basal resistance, effectortriggered immunity(ETI) and nonhost resistance, using eight pathosystems involving the hosts Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana and the pathogens Sclerotinia sclerotiorum, Pseudomonas syringae pv. tabaci, P. syringae pv. tomato DC3000, and Xanthomonas oryzae pv. oryzae(Xoo). We show evidence that leaf stage-associated resistance exists ubiquitously in plants, but with varying intensity at different stages in diverse pathosystems. Microarray expression profiling assays demonstrated that hundreds of genes involved in defense responses, phytohormone biosynthesis and signaling, and calcium signaling, were differentially expressed between leaves at different stages. The Arabidopsis mutants sid1, sid2-3, ein2, jar1-1, aba1 and aao3 lost leaf stage-associated resistance to S. sclerotiorum, and the mutants aba1 and sid2-3 were affected in leaf stage-associated RPS2/Avr Rpt2t-conferred ETI, whereas only the mutant sid2-3 influenced leaf stage-associated nonhost resistance to Xoo. Our results reveal that the phytohormones salicylic acid,ethylene, jasmonic acid and abscisic acid likely play an essential, but pathosystem-dependent, role in leaf stageassociated resistance.  相似文献   

6.
Salicylic acid (SA) is an important regulator of plant resistance to biotrophic and hemi-biotrophic pathogens. The enhanced pseudomonas susceptibility 1 ( eps1 ) mutant in Arabidopsis thaliana is hypersusceptible to both virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae . Through positional cloning, the EPS1 gene was isolated and found to encode a novel member of the BAHD acyltransferase superfamily. Pathogen-induced accumulation of SA and expression of pathogenesis-related ( PR ) genes were compromised in the eps1 mutant. SA could induce PR1 gene expression and restore disease resistance in the eps1 mutant. These results suggest that EPS1 functions upstream of SA and may be involved directly in synthesis of a precursor or a regulatory molecule for SA biosynthesis. Mutations of EPS1 or other genes important for SA accumulation or signaling conferred enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola in the Nossen-0 background but had little effect in the Columbia-0 background. These results suggest that there is natural variation among Arabidopsis ecotypes with respect to the antagonistic cross-talk between defense signaling pathways against various types of microbial pathogens.  相似文献   

7.
In contrast to gene-for-gene disease resistance, nonhost resistance governs defense responses to a broad range of potential pathogen species. To identify specific genes involved in the signal transduction cascade associated with nonhost disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana, and identified the peroxisomal enzyme glycolate oxidase (GOX) as an essential component of nonhost resistance. GOX-silenced N. benthamiana and Arabidopsis thaliana GOX T-DNA insertion mutants are compromised for nonhost resistance. Moreover, Arabidopsis gox mutants have lower H(2)O(2) accumulation, reduced callose deposition, and reduced electrolyte leakage upon inoculation with hypersensitive response-causing nonhost pathogens. Arabidopsis gox mutants were not affected in NADPH oxidase activity, and silencing of a gene encoding NADPH oxidase (Respiratory burst oxidase homolog) in the gox mutants did not further increase susceptibility to nonhost pathogens, suggesting that GOX functions independently from NADPH oxidase. In the two gox mutants examined (haox2 and gox3), the expression of several defense-related genes upon nonhost pathogen inoculation was decreased compared with wild-type plants. Here we show that GOX is an alternative source for the production of H(2)O(2) during both gene-for-gene and nonhost resistance responses.  相似文献   

8.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

9.
10.
Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed.  相似文献   

11.
Despite impressive advances in the study of plant resistance to pathogens, little is known about the molecular basis of plant susceptibility to virulent pathogens. Recent progress in susceptible plant-Pseudomonas syringae interactions has provided a glimpse into the battles fought between plants and bacterial pathogens. A key step for pathogenesis appears to be the suppression of host defenses. Suppression of host defenses, including basal defense, gene-for-gene resistance and nonhost resistance, is a key step for pathogenesis. Defense suppression is mediated by bacterial effector proteins, which are secreted through the type III secretion system, and by coronatine, a bacterial toxin that structurally and functionally mimics methyl jasmonate, a plant defense signaling molecule.  相似文献   

12.
Lu M  Tang X  Zhou JM 《The Plant cell》2001,13(2):437-447
Nonhost interactions are prevalent between plants and specialized phytopathogens. Although it has great potential for providing crop plants with durable resistance, nonhost resistance is poorly understood. Here, we show that nonhost resistance is controlled, at least in part, by general resistance. Arabidopsis plants are resistant to the nonhost pathogen Pseudomonas syringae pv phaseolicola NPS3121 and completely arrest bacterial multiplication in the plant. Ten Arabidopsis mutants were isolated that were compromised in nonhost (nho) resistance to P. s. phaseolicola. Among these, nho1 is caused by a single recessive mutation that defines a novel gene. nho1 is defective in nonspecific resistance to Pseudomonas bacteria, because it also supported the growth of P. s. tabaci and P. fluorescens bacteria, both of which are nonpathogenic on Arabidopsis. In addition, the nho1 mutation also compromised resistance mediated by RPS2, RPS4, RPS5, and RPM1. Interestingly, the nho1 mutation had no effect on the growth of the virulent bacteria P. s. maculicola ES4326 and P. s. tomato DC3000, but it partially restored the in planta growth of the DC3000 hrpS(-) mutant bacteria. Thus, the virulent bacteria appear to evade or suppress NHO1-mediated resistance by means of an Hrp-dependent virulence mechanism.  相似文献   

13.
The model plant pathogen Pseudomonas syringae pv. tomato DC3000 grows and produces necrotic lesions in the leaves of its host, tomato. Both abilities are dependent upon the hypersensitive response and pathogenicity (Hrp) type III secretion system (TTSS), which translocates multiple effector proteins into plant cells. A previously constructed DC3000 mutant with a 9.3-kb deletion in the Hrp pathogenicity island conserved effector locus (CEL) was strongly reduced in growth and lesion formation in tomato leaves. The ACEL mutation affects three putative or known effector genes: avrE1, hopM1, and hopAA1-1. Comparison of genomic sequences of DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a revealed that these are the only effector genes present in the CEL of all three strains. AvrEl was shown to carry functional TTSS translocation signals based on the performance of a fusion of the first 315 amino acids of AvrE1 to the Cya translocation reporter. A DC3000 delta avrE1 mutant was reduced in its ability to produce lesions but not in its ability to grow in host tomato leaves. AvrE1 expressed from the 35S promoter elicited cell death in nonhost Nicotiana tabacum leaves and host tomato leaves in Agrobacterium-mediated transient expression experiments. Mutations involving combinations of avrE1, hopM1, and hopAA1-1 revealed that deletion of both avrE1 and hopM1 reproduced the strongly reduced growth and lesion phenotype of the delta CEL mutant. Furthermore, quantitative assays involving different levels of inoculum and electrolyte leakage revealed that the avrE1/hopM1 and deltaCEL mutants both were partially impaired in their ability to elicit the hypersensitive response in nonhost N. benthamiana leaves. However, the avrE1/hopM1 mutant was not impaired in its ability to deliver AvrPto1(1-100)-Cya to nonhost N. benthamiana or host tomato leaves during the first 9 h after inoculation. These data suggest that AvrE1 acts within plant cells and promotes lesion formation and that the combined action of AvrE1 and HopM1 is particularly important in promoting bacterial growth in planta.  相似文献   

14.
15.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

16.
Volatile, low-molecular weight terpenoids have been implicated in plant defenses, but their direct role in resistance against microbial pathogens is not clearly defined. We have examined a possible role of terpenoid metabolism in the induced defense of Arabidopsis thaliana plants against leaf infection with the bacterial pathogen Pseudomonas syringae. Inoculation of plants with virulent or avirulent P. syringae strains induces the emission of the terpenoids (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), beta-ionone and alpha-farnesene. While the most abundant volatile, the C16-homoterpene TMTT, is produced relatively early in compatible and incompatible interactions, emission of both beta-ionone and alpha-farnesene only increases in later stages of the compatible interaction. Pathogen-induced synthesis of TMTT is controlled through jasmonic acid (JA)-dependent signaling but is independent of a functional salicylic acid (SA) pathway. We have identified Arabidopsis T-DNA insertion lines with defects in the terpene synthase gene TPS4, which is expressed in response to P. syringae inoculation. The tps4 knockout mutant completely lacks induced emission of TMTT but is capable of beta-ionone and alpha-farnesene production, demonstrating that TPS4 is specifically involved in TMTT formation. The tps4 plants display at least wild type-like resistance against P. syringae, indicating that TMTT per se does not protect against the bacterial pathogen in Arabidopsis leaves. Similarly, the ability to mount SA-dependent defenses and systemic acquired resistance (SAR) is barely affected in tps4, which excludes a signaling function of TMTT during SAR. Besides P. syringae challenge, intoxication of Arabidopsis leaves with copper sulfate, a treatment that strongly activates JA biosynthesis, triggers production of TMTT, beta-ionone, and alpha-farnesene. Taken together, our data suggest that induced TMTT production in Arabidopsis is a by-product of activated JA signaling, rather than an effective defense response that contributes to resistance against P. syringae.  相似文献   

17.
? Plant immunity is activated by sensing either conserved microbial signatures, called pathogen/microbe-associated molecular patterns (P/MAMPs), or specific effectors secreted by pathogens. However, it is not known why most microbes are nonpathogenic in most plant species. ? Nonhost resistance (NHR) consists of multiple layers of innate immunity and protects plants from the vast majority of potentially pathogenic microbes. Effector-triggered immunity (ETI) has been implicated in race-specific disease resistance. However, the role of ETI in NHR is unclear. ? Pseudomonas syringae pv. tomato (Pto) T1 is pathogenic in tomato (Solanum lycopersicum) yet nonpathogenic in Arabidopsis. Here, we show that, in addition to the type III secretion system (T3SS)-dependent effector (T3SE) avrRpt2, a second T3SE of Pto T1, hopAS1, triggers ETI in nonhost Arabidopsis. ? hopAS1 is broadly present in P. syringae strains, contributes to virulence in tomato, and is quantitatively required for Arabidopsis NHR to Pto T1. Strikingly, all tested P. syringae strains that are pathogenic in Arabidopsis carry truncated hopAS1 variants of forms, demonstrating that HopAS1-triggered immunity plays an important role in Arabidopsis NHR to a broad-range of P. syringae strains.  相似文献   

18.
In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.  相似文献   

19.
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing nutrient uptake and pathogen adaptation to the environment of the host plant. We demonstrate that the type III effector HopAM1 (formerly known as AvrPpiB) enhances the virulence of a weak pathogen in plants that are grown under drought stress. This is the first report of a type III effector that aids pathogen adaptation to water availability in the host plant. Expression of HopAM1 makes transgenic Ws-0 Arabidopsis hypersensitive to abscisic acid (ABA) for stomatal closure and germination arrest. Conditional expression of HopAM1 in Arabidopsis also suppresses basal defenses. ABA responses overlap with defense responses and ABA has been shown to suppress defense against P. syringae pathogens. We propose that HopAM1 aids P. syringae virulence by manipulation of ABA responses that suppress defense responses. In addition, host ABA responses enhanced by type III delivery of HopAM1 protect developing bacterial colonies inside leaves from osmotic stress.  相似文献   

20.
Mitogen-activated protein (MAP) kinase cascades are fundamental components of the signaling pathways associated with plant immunity. Despite the large number of MAP kinase kinase kinases (MAPKKK) encoded in the plant genome, only very few of them have an assigned function. Here, we identified MAPKKK gene of tomato (Solanum lycopersicum), SIMAPKKKε, which is required for hypersensitive response cell death and disease resistance against Gram-negative bacterial pathogens. Silencing of SIMAPKKKε compromised tomato resistance to Xanthomonas campestris and Pseudomonas syringae strains, resulting in the appearance of disease symptoms and enhanced bacterial growth. In addition, silencing of NbMAPKKKε in Nicotiana benthamiana plants significantly inhibited the cell death triggered by expression of different R gene/effector gene pairs. Conversely, overexpression of either the full-length SIMAPKKKε gene or its kinase domain in N. benthamiana leaves caused pathogen-independent activation of cell death that required an intact kinase catalytic domain. Moreover, by suppressing the expression of various MAPKK and MAPK genes and overexpressing the SIMAPKKKε kinase domain, we identified a signaling cascade acting downstream of SIMAPKKKε that includes MEK2, WIPK and SIPK. Additional epistasis experiments revealed that SIPKK functions as a negative regulator of SIMAPKKKε-mediated cell death. Our results provide evidence that SIMAPKKKε is a signaling molecule that positively regulates cell death networks associated with plant immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号