首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Studies on the regulation of the enterocytic differentiation of the human colon cancer cell line HT-29, which is differentiated in the absence (Glc-) but not in the presence of glucose (Glc+), have recently shown that the post-translational processing of sucrase-isomaltase and particularly its glycosylation vary as a function of cell differentiation (Trugnan G., Rousset, M., Chantret, I., Barbat, A., and Zweibaum, A. (1987) J. Cell Biol. 104, 1199-1205). Other studies indicate that in undifferentiated HT-29 Glc+ cells there is an accumulation of UDP-N-acetylhexosamine, which is involved in the glycosylation process (Wice, B. M., Trugnan, G., Pinto, M., Rousset, M., Chevalier, G., Dussaulx, E., Lacroix, B., and Zweibaum, A. (1985) J. Biol. Chem. 260, 139-146). The purpose of the present work is to investigate whether an overall alteration of protein glycosylation is associated with the inability of HT-29 cells to differentiate. At least three alterations are detected: (i) after a 10-min pulse, the incorporation of D-[2-3H]mannose in undifferentiated cells is severely reduced, compared to differentiated cells. (ii) After a 24-h period of labeling with D-[2-3H]mannose, undifferentiated cells accumulate more than 60% of the radioactivity in the high mannose glycopeptides, whereas differentiated HT-29 Glc- cells accumulate only 38%. (iii) The analysis of the high mannose oligosaccharides transferred "en bloc" from the lipid precursor shows that Man9,8-GlcNAc2 species accumulate in undifferentiated cells, whereas no such accumulation can be detected in differentiated cells. This glycosylation pattern is consistent with an impairment of the trimming of high mannose into complex glycans. It is concluded that N-glycan processing is correlated with the state of enterocytic differentiation of HT-29 cells.  相似文献   

2.
After treatment with swainsonine, an inhibitor of both lysosomal alpha-mannosidase and Golgi alpha-mannosidase-II activities, analysis of [3H]mannose-labeled glycans showed that HT-29 cells, derived from a human colonic adenocarcinoma, displayed distinct patterns of N-glycan expression, depending upon their state of enterocytic differentiation. In differentiated HT-29 cells hybrid-type chains were detected, whereas undifferentiated HT-29 cells accumulated high-mannose-type oligosaccharide, despite our demonstration of Golgi alpha-mannosidase-II activity in both cell populations. Pulse/chase experiments carried out in the presence of swainsonine revealed that the persistence of high-mannose-type chains in undifferentiated HT-29 cells was the result of the stabilization of glycoproteins substituted with these glycans. These data suggest that in undifferentiated HT-29 cells, glycoproteins with high-mannose-type oligosaccharides are delivered to a degradative compartment containing swainsonine-sensitive alpha-mannosidase(s), whereas in differentiated HT-29 cells glycoproteins enter a compartment in which alpha-mannosidase II (Golgi apparatus) is present. Thus, this apparent dual effect of swainsonine on N-glycan trimming may reflect differences in the intracellular traffic of glycoproteins as a function of the state of enterocytic differentiation of HT-29 cells.  相似文献   

3.
The human colon cancer cell line HT-29 remains totally undifferentiated when glucose is present in the culture medium (HT-29 Glc+), while the same cells may undergo typical enterocytic differentiation after reaching confluence when grown in glucose-deprived medium (HT-29 Glc-). Recently, we demonstrated a deficiency in the overall N-glycan processing in confluent undifferentiated cells, whereas differentiated cells follow a classical pattern of N-glycosylation. The main changes in N-glycosylation observed in confluent undifferentiated cells may be summarised as follows: 1) the conversion of high mannose into complex glycopeptides is greatly decreased; 2) this decreased conversion could be a consequence of an accumulation of Man9-8-GlcNAc2-Asn high mannose species. Whether these changes in N-glycan processing appear progressively during cell culture or are already present from the beginning of the culture was investigated in this study by comparing the actual status of N-glycan processing in exponentially growing HT-29 Glc- and HT-29 Glc+ cells. Under these conditions, HT-29 Glc- cells do not exhibit any characteristics of differentiation. The conversion of high mannose into complex glycoproteins is severely reduced in HT-29 Glc+ cells, regardless of the growth phase studied. In contrast, HT-29 Glc- cells display a normal pattern of N-glycan processing in both growth phases. We therefore conclude that N-glycan processing may be used as an early biochemical marker of the enterocytic differentiation process of HT-29 cells.  相似文献   

4.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

5.
To study the properties of protein-bound oligosaccharides in neuronally differentiating cells, two model systems were used: murine N1E-115 and N-18 neuroblastoma cells inducible by serum starvation and rat PC12 pheochromocytoma cells inducible by nerve growth factor. Glycopeptides were prepared from cells metabolically labeled with [3H]glucosamine and analyzed by gel filtration. The properties of the high-molecular-weight glycopeptides were studied using enzymatic digestion with neuraminidase and endo-beta-galactosidase. In contrast to other cell lines analyzed, the neuroblastoma and pheochromocytoma lines contained predominantly glycopeptides completely cleavable with endo-beta-galactosidase, which indicated that they were linear-type poly-N-acetyllactosamine glycans. The proportion of these linear chains in the high-molecular-weight fraction increased during neuronal differentiation in both cell systems. The linear nature of the glycans was also correlated with positive anti-i and negative anti-I reactivity of the cells in immunofluorescence microscopy. Specific cell surface labeling for poly-N-acetyllactosamine glycans and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed several glycoprotein components, some of which showed changes during neuronal differentiation. The high proportion of linear poly-N-acetyllactosamine chains in these neuronal cell lines and its increase during neuronal differentiation suggests that these glycans may be a characteristic feature of neuronal or neuronally differentiating cells.  相似文献   

6.
Confluent cultured intestinal epithelial cells displayed greater adhesion to the substratum than did subconfluent cells. Subconfluent and confluent cells were labelled with [3H]fucose for 24h and the cell-surface components were released by mild Pronase treatment. After extensive Pronase digestion, cell-surface and cell-residue glycopeptides were fractionated on Bio-Gel P-6. The cell surface contained a higher proportion of lower-molecular-weight glycopeptides than the residue. No significant difference in elution pattern was found between total cell-surface glycopeptides of subconfluent and confluent cells. However, confluent cells contained almost twice as much [3H]-fucose-labelled glycopeptides that were bound to concanavalin A-Sepharose and were subsequently eluted with 20mM-methyl alpha-D-glucopyranoside as subconfluent cells. When the bound glycopeptides were chromatographed on Bio-Gel P-6, it was found that confluent cells contained a larger proportion of lower-molecular-weight glycopeptides than subconfluent cells. This difference in size was eliminated after treatment of glycopeptides with sialidase. When growth of subconfluent cells was inhibited with a non-toxic concentration of retinoic acid, no significant effect on the elution pattern of [3H]fucose-labelled glycopeptides was observed on either Bio-Gel P-6 or concanavalin A-Sepharose. No significant difference was found in the total [3H]fucose-labelled glycoproteins from subconfluent and confluent cells by two-dimensional gel electrophoresis. It is suggested that the differences in [3H]fucose-labelled glycopeptides between subconfluent and confluent cells are cell-density-dependent rather than growth-dependent, and that these differences are likely to result from some changes in glycosylation mechanism(s). Furthermore, the differences in cell-surface glycopeptides may be related to the changes in the adhesion of the cells to the substratum.  相似文献   

7.
Processing of N-linked oligosaccharides in soybean cultured cells   总被引:4,自引:0,他引:4  
Evidence, based on both in vivo and in vitro studies with suspension-cultured soybean cells, is presented to demonstrate the processing of the oligosaccharide chain of plant N-linked glycoproteins. Following a 1-h incubation of soybean cells with [2-3H]mannose, the predominant glycopeptide obtained by pronase digestion of the membrane fraction was a Man7- or Man8GlcNAc2-Asn (GlcNAc, N-acetylglucosamine). However, the major oligosaccharide isolated from the lipid-linked oligosaccharides of these cells was a Glc2- or Glc3Man9GlcNAc2. Soybean cells were incubated with [2-3H]mannose and the incorporation of mannose into Pronase-released glycopeptides was followed during a 2-h chase. During the first 10 min of labeling, the radioactivity was mostly in a large-sized glycopeptide that appeared to be a Glc1Man9GlcNAc2-peptide. During the next 60 to 90 min of chase, this radioactivity was shifted to smaller and smaller-sized glycopeptides indicating that removal of sugars (i.e., processing) had occurred. Both glucosidase and mannosidase activity was detected in membrane preparations of soybean cells. Nine different glycopeptides were isolated from Pronase digests of soybean cell membrane fractions. These glycopeptides were purified by repeated gel filtration on columns of Bio-Gel P-4. Partial characterization of these glycopeptides by endoglucosaminidase H and alpha-mannosidase digestion, and by analysis of the products, suggested the following glycopeptides: Glc1Man9GlcNAc2-Asn, Man8GlcNAc2-Asn, Man7GlcNAc2-Asn, Man6GlcNAc2-Asn, and Man5GlcNAc2-Asn.  相似文献   

8.
Chicken embryo fibroblasts (C/E phenotype) infected with subgroups B and C of the Prague strain of Rous sarcoma virus were radiolabeled with either [6-(3)H]-glucosamine or [2-(3)H]mannose, and virus was purified from the growth medium. The large envelope glycoprotein, gp85, was the only major radiolabeled component of purified virus. Pronase-digested glycopeptides from purified virus were analyzed by a combination of (i) gel filtration with columns of Sephadex G15/G50 and Bio-Gel P4 and (ii) enzymatic digestion of the oligosaccharide chains with specific exoglycosidases and endo-beta-N-acetylglucosaminidases. The rather broad molecular weight distribution (approximately 2,000 to 4,000) for glycopeptides in these studies and previous studies in other laboratories was shown to represent actual heterogeneity in the carbohydrate moieties: (i) the glycopeptides contained both mannose-rich, neutral chains and complex, acidic chains with terminal sialic acid; and (ii) both classes of asparagine-linked carbohydrate structures exhibited heterogeneity in the size of the oligomannosyl core (a mixture of approximately 5 to 9 mannose units for the neutral structures, and 3 or 5 mannose units for the acidic structures). With the [2-(3)H]mannose-labeled glycopeptides from Rous sarcoma virus, Prague strain subgroup C, most of the oligosaccharide chains were high-molecular-weight, acidic structures, with similar numbers of 3-mannose and 5-mannose core structures.  相似文献   

9.
CaCo-2 cells are human colonic adenocarcinoma cells which can differentiate spontaneously into enterocytes when maintained confluent for extended periods of time. Cells kept in culture for 4 days (rapidly growing), 7-9 days (early confluence) and 19-22 days (late confluence) were incubated for 24 h with L-[5,6-3H]fucose or D-[6-3H]glucosamine in order to examine the changes in glycoprotein carbohydrate structure that occur during this differentiation. Labelled glycopeptides obtained by exhaustive Pronase digestion of the cell-surface and cell-pellet fractions were fractionated on Bio-Gel P-6. A high-Mr glycopeptide fraction which was excluded from Bio-Gel P-6 was present in all cases. These glycopeptides were then fractionated by affinity chromatography on Datura stramonium agglutinin-agarose. The glycopeptides which were specifically bound to the lectin column were largely degraded by endo-beta-galactosidase, thereby indicating that they consisted of fucosylated polylactosaminoglycans. The proportion of labelled polylactosaminoglycans decreased with increasing time in culture, whereas sucrase activity, which is characteristic of differentiated enterocytes, increased. These results demonstrate that a relatively large decrease in the proportion of fucosylated polylactosaminoglycans occurs with differentiation of CaCo-2 cells.  相似文献   

10.
Teratocarcinoma stem cells can be used to study the events related to early differentiation, and many cell surface changes have been described which correlate with the different stages of early embryogenesis. In this work we analyze the [3H]galactose-labeled glycopeptides derived from the mouse embryonal carcinoma cell line F9. We show that the high-molecular-weight glycopeptides typical of embryonal carcinoma cells are composed of two distinct molecular weight classes, namely H1 and H3, and that retinoic acid-induced differentiation determines a relative increase of the larger peak (H1) which is mainly due to a decrease in the expression of H3 species. We also show that, beside this decrease, there is a greater increase in the expression of lower-molecular-weight species. Furthermore, we present evidence that H1 and H3 species are polylactosaminoglycans N-linked to the peptidic backbone, and that induction of differentiation determines slight modifications in the structure of such species.  相似文献   

11.
Membrane glycoprotein biosynthesis of ascites hepatoma cells is followed by [14C]glucosamine and [3H]leucine incorporation into cells in culture. The rate of incorporation is strongly increased by the addition of Robinia lectin in culture medium. Labeled glycoproteins are released from lectin stimulated and non-stimulated cells by trypsin digestion. Studies of labeled trypsinates on sodium dodecyl sulfate gel electrophoresis and Sephadex G-200 filtration exhibit two fractions both labeled with [14C]glucosamine and [3H]leucine and having different molecular weights, one over 200000 and the other about 2000. Identical results are obtained when external membrane glycoproteins are solubilized by sodium deoxycholate. Comparison of surface glycoproteins isolated by trypsinization from control cells labeled with [3H]-glucosamine and from lectin stimulated cells labeled with [14C]glucosamine displays no significant qualitative differences between glycoprotein fractions released from both cell groups.  相似文献   

12.
The human colon carcinoma cell line HT-29 differentiates into functional enterocytes upon replacement of glucose by galactose in the culture medium. Since the differentiation of other types of cells is associated with the modulation of 1,25-dihydroxycholecalciferol (1,25(OH)2D3) receptor concentrations and since enterocytes are classical target cells for 1,25(OH)2D3 we have examined the HT-29 cells to determine whether the differentiated and undifferentiated stages could be directly linked to the presence of 1,25(OH)2D3 receptors. HT-29 cells were grown in Dulbecco's modified medium containing 10% fetal calf serum (FCS) and glucose or galactose. Cell differentiation was assessed by measuring the brush border hydrolase, maltase. 1,25(OH)2D3 receptors were studied in the cells after 48 h without FCS. Nuclear uptake was measured in intact dispersed cells and the receptor protein was further characterized by vitamin D metabolite binding specificity, sucrose density gradient analysis and binding to DNA-cellulose. Maltase activity was 5-fold greater in differentiated HT-29 cells than in undifferentiated cells. Scatchard analysis showed a highly specific saturable (9500 sites per cell) high affinity (2 x 10(-10) M), binding of 1,25(OH)2D3 in undifferentiated cells. This receptor-like protein sedimented at 3.3S, bound to and eluted from DNA-cellulose and had all the characteristics of a 1,25(OH)2D3 receptor. No specific binding was detected in differentiated HT-29 cells. The presence of 1,25(OH)2D3 receptors in undifferentiated HT-29 cells implies that these cells are targets for vitamin D. The maltase activity increased significantly when undifferentiated cells were exposed to 1,25(OH)2D3 for 5-6 days, indicating that the hormone can promote differentiation of HT-29 cells. These results demonstrate that HT-29 cells can provide a new model for studying steroid receptor regulation and cell differentiation.  相似文献   

13.
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 microM with HT-29 cells for 24 hr, with [3H]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 microM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present.  相似文献   

14.
Quiescent thymocytes, mitogen-stimulated thymocytes and acute-leukaemic lymphoblasts provide a model for the study of protein glycosylation in quiescent cells, mitotically active non-malignant and malignant cells respectively. The biosynthesis of both complex and high-mannose-type oligosaccharides was monitored by metabolic labelling with [6-3]fucose and [2-3H]mannose. Bio-Gel P6 elution profiles of [6-3H]fucose-labelled glycopeptides showed that quiescent thymocytes and stimulated thymocytes synthesized qualitatively and quantitatively similar glycopeptides; however, higher-molecular-weight glycopeptides were synthesized by the acute-leukaemic lymphoblasts. The amount of [2(-3)H]mannose incorporated into glycopeptide by quiescent thymocytes was less than 10% of that incorporated by stimulated thymocytes. The Bio-Gel P6 elution profile of [2(-3)H]mannose-labelled glycopeptides from acute leukaemic lymphoblasts was qualitatively similar to that of stimulated thymocytes, with about 40% of the radioactivity incorporated into one glycopeptide peak. This glycopeptide was characterized by Bio-Gel P6 and concanavalin A affinity chromatography, radioactive-sugar analysis, sensitivity to alpha-mannosidase and endoglycosidase H and resistance to beta-glucosaminidase as containing a high-mannose oligosaccharide, possible of Man7-8GlcNAc2 structure. Pulse/chase experiments indicated that this high-mannose oligosaccharide was an end product and not a biosynthetic intermediate. It is concluded that higher-molecular-weight fucose-labelled glycopeptides are characteristic of the malignant cell type, and the synthesis of high-mannose oligosaccharide, Man7-8GlcNAc2, in stimulated thymocytes and acute-leukaemic lymphoblasts is associated with mitotically active cells.  相似文献   

15.
Human colon-carcinoma cells were exposed to D-glucosamine at 2.5, 5 and 10 mM, concentrations that were growth-inhibitory but not cytocidal in the presence of a physiological glucose concentration. Labelling of these HT-29 cells with D-[14C]-glucosamine, followed by nucleotide analyses, demonstrated that UDP-N-acetyl-hexosamines represented the major intracellular nucleotide pool and the predominant metabolite of the amino sugar. D-[14C]Glucosamine was not a precursor of UDP-glucosamine. After 4h exposure to D-glucosamine (2.5 mM), the pool of UDP-N-acetylhexosamines was increased more than 6-fold, whereas UTP and CTP were markedly decreased. UDP-glucuronate content increased by more than 2-fold, whereas purine nucleotide content was little altered. Uridine (0.1 mM) largely reversed the decrease in UTP, CTP, UDP-glucose and UDP-galactose, while intensifying the expansion of the UDP-N-acetylhexosamine pool. Uridine did not reverse the D-glucosamine-induced retardation of growth in culture. A 50% decrease in growth also persisted when uridine and cytidine, cytidine alone, or UDP, were added together with D-glucosamine. The growth-inhibitory effect of the amino sugar could therefore be best correlated with the quantitative change in the pattern of sugar nucleotides, and, in particular, with the many-fold increase in UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine.  相似文献   

16.
We demonstrated that TNF-alpha suppressed differentiation and potentiated cell death induced by butyrate (NaBt) in both adenocarcinoma HT-29 and fetal FHC human colon cells in vitro. Since TNF-alpha is a typical activator of NF-kappaB pathway, we studied the role of NF-kappaB activation in cell differentiation and death during the TNF-alpha and NaBt co-treatment. TNF-alpha induced rapid NF-kappaB activation in both HT-29 and FHC cell lines and this effect was differently modulated by NaBt in these two cell lines. In HT-29 cells, NaBt potentiated NF-kappaB activity induced by TNF-alpha after 4h treatment. However, this initial potentiation of NF-kappaB activity was not observed in FHC cells. During additional time of TNF-alpha and NaBt co-treatment, NaBt decreased the TNF-alpha-mediated NF-kappaB activity in both cell types. We also detected a different response of HT-29 and FHC cells after the pre-treatment with the NF-kappaB inhibitor parthenolide. Our results indicated that NaBt-mediated differentiation and apoptosis of colon epithelial cells can be modulated by TNF-alpha. Furthermore, we found significant differences in the mechanism of the NaBt and TNF-alpha co-treatment effects between cells of non-cancer and cancer origin, suggesting that the NF-kappaB pathway may be more effectively involved in these processes in cancer cells.  相似文献   

17.
1. Primary cultures of chondrocytes from the Swarm rat chondrosarcoma were labelled with either [3H]glucosamine or [14C]glucosamine, and hyaluronate synthesized by the cells was isolated from the cell layer. Parallel cultures were labelled with either [3H]serine or [3H]lysine, and identical fractions were isolated from the cell layer. Some cultures were dual-labelled. 2. In cultures labelled with [3H]serine for between 30 min and 24 h and extracted with 4.0 M-guanidine, a procedure that solubilizes predominantly extracellular macromolecules, small amounts of [3H]serine-labelled molecules were found associated with the hyaluronate fraction purified from the extract by dissociative CsCl-density-gradient centrifugation and dissociative Sepharose CL-2B chromatography. About 75% of the [3H]serine-labelled molecules in the fraction were specifically associated with hyaluronate, since they could be removed by prior treatment with proteinase-free Streptomyces hyaluronidase. The association of the [3H]serine-labelled molecules with hyaluronate was non-covalent, since they could be separated from it by further centrifugation in CsCl density gradients containing 4 M-guanidinium chloride and a zwitterionic detergent. 3. In other experiments the cultures were extracted with a sequential zwitterionic-detergent/guanidinium chloride procedure that completely solubilized the cell layer and enabled fractions containing newly synthesized cell-associated hyaluronate to be isolated. Zwitterionic detergent was present throughout. No [3H]lysine was incorporated into these fractions, irrespective of whether the cultures were pulsed concurrently with [3H]lysine and [14C]glucosamine or sequentially with [3H]lysine to prelabel the protein pool (24 h) followed by [14C]-glucosamine to label hyaluronate (1 h). 4. The results show that newly synthesized hyaluronate is not associated with covalently bound protein, and suggest that chain synthesis is initiated by a mechanism other than on to a core protein. Small amounts of [3H]serine-labelled molecules are, however, non-covalently associated with extracellular hyaluronate. Their identity is at present unknown, but they are probably of low molecular weight.  相似文献   

18.
Trefoil factor family (TFF) peptides are typical secretory products of mucin-producing cells, e.g. of the gastrointestinal tract. Here, the expression and secretion of mucins and TFF peptides was studied in the HT-29 cell line throughout cellular growth and differentiation in relation to a mucin-secreting (HT-29 MTX) or an enterocyte-like (HT-29 G(-)) phenotype. mRNAs of several MUC and TFF genes were expressed in both cell subpopulations. However, for most MUC and TFF genes, the expression appeared strongly induced with the differentiation into the mucin-secreting phenotype. On the other hand, TFF2 was specifically expressed in the mucin-secreting HT-29 MTX cells. The differentiation of HT-29 MTX cells into the mucin-secreting phenotype was characterised by secretion of the gel-forming mucins MUC2, MUC5AC, and MUC5B, however, according to a different pattern in the course of differentiation. A significant amount of TFF1 and TFF3 was secreted after differentiation, also according to a different pattern, whereas TFF2 was only faintly detected. Secretagogues, known to induce the secretion of mucus, increased the secretion of all three TFF peptides. In contrast, neither a secretory mucin nor a TFF peptide was found in the culture medium of HT-29 G(-) cells. Overlay assays indicated that HT-29 MTX mucins bound to secretory peptides of HT-29 MTX cells with relative molecular mass similar to TFF peptides. TFF1 and TFF3 were specifically localised in the mucus layer of HT-29 MTX cells by confocal microscopy. Finally, the secretion of TFF peptides and mucins appears as a co-ordinated process which only occurs after differentiation into goblet cell-like phenotype.  相似文献   

19.
Intestinal epithelial cells not only present a physical barrier to bacteria but also participate actively in immune and inflammatory responses. The migration of epithelial cells from the crypt base to the surface is accompanied by a cellular differentiation that leads to important morphological and functional changes. It has been reported that the differentiation of colonic epithelial cells is associated with reduced interleukin (IL)-8 responses to IL-1beta. Although toll-like receptor 4 (TLR4) has been previously identified to be an important component of mucosal immunity to lipopolysaccharide (LPS) in the colon, little is known about the regulation of TLR4 in colonic epithelial cells during cellular differentiation. We investigated the effects of differentiation on LPS-induced IL-8 secretion and on the expression of TLR4. Differentiation was induced in colon cancer cell line HT-29 cells by butyrate treatment or by post-confluence culture and assessed by measuring alkaline phosphatase (AP) activity. IL-8 secretion was measured by ELISA, and TLR4 protein and mRNA expressions were followed by Western blot and RT-PCR, respectively. HT-29 cells were found to be dose-dependently responsive to LPS. AP activity increased in HT-29 cells by differentiation induced by treatment with butyrate or post-confluence culture. We found that IL-8 secretion induced by LPS was strongly attenuated in differentiated cells versus undifferentiated cells, and that cellular differentiation also attenuated TLR4 mRNA and protein expressions. Pretreating HT-29 cells with tumor necrosis factor (TNF)-alpha or interferon (INF)-gamma augmented LPS-induced IL-8 secretion and TLR4 expression. These TNF-alpha- or INF-gamma-induced augmentations of LPS response and TLR4 expression were all down-regulated by differentiation. Collectively, we conclude that cellular differentiation attenuates IL-8 secretion induced by LPS in HT-29 cells, and this attenuation is related with the down-regulation of TLR4 expression.  相似文献   

20.
The two clonal murine muscle cell lines G7 and G8, originally derived from the M114 line [20], represent unique models for comparative studies of myogenesis. Glycolipid synthesis was examined during differentiation using [3H]-galactose and [3H]-glucosamine as precursors. Upon G7 contact glucosylceramide labeling increased and nLcOse5Cer labeling stopped. During membrane fusion, glucosylceramide labeling stopped and lactosylceramide became the major synthetic product. G8 cells presented a different pattern, with increased labeling of GbOse3Cer during myogenesis. The major ganglioside synthesized by both myoblasts was GM3, and more complex structures were observed following completion of myotube formation. Total glycopeptide labeling increased when G8 myoblasts fused and remained elevated in myotubes, whereas no differences during fusion of G7 cells were noted. Upon comparison of the two clonal lines, the only consistent observation was a significant increase in the synthesis of total gangliosides and neutral glycolipid during cell contact and membrane fusion (p < 0.02). The results suggest that changes in the synthesis of specific glycolipid structures during myogenesis are unique to each muscle cell line examined. However, transient increases in synthesis of total myoblast gangliosides and neutral glycolipids may be a more general phenomenon, possibly by curbing proliferation or by altering myoblast membrane fluidity characteristics during differentiation.Abbreviations MG6 VI3NeuAc-V4Gal-IV3GlcNAc-nLcOse4Cer - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - Gal galactose - GlcNH glucosamine - PBS phosphate buffered saline - CK creatine kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号