首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Brenner RE  Boone RD  Jones JB  Lajtha K  Ruess RW 《Oecologia》2006,148(4):602-611
Floristic succession in the boreal forest can have a dramatic influence on ecosystem nutrient cycling. We predicted that a decrease in plant and microbial demand for nitrogen (N) during the transition from mid- to late-succession forests would induce an increase in the leaching of dissolved inorganic nitrogen (DIN), relative to dissolved organic nitrogen (DON). To test this, we examined the chemistry of the soil solution collected from within and below the main rooting zones of mid- and late-succession forests, located along the Tanana River in interior Alaska. We also used a combination of hydrological and chemical analyses to investigate a key assumption of our methodology: that patterns of soil water movement did not change during this transition. Between stands, there was no difference in the proportion of DIN below the rooting zone. 84–98% of DIN at both depths consisted of nitrate, which was significantly higher in the deeper mineral soil than at the soil surface (0.46±0.12 mg NO 3 –N l−1 vs 0.17±0.12 mg NO 3 –N l−1, respectively), and 79–92% of the total dissolved N consisted of DON. Contrary to our original assumption that nutrients were primarily leached downward, out of the rooting zone, we found much evidence to suggest that the glacially-fed Tanana River (>200 m from these stands) was contributing to the influx of water and nutrients into the soil active layer of both stands. Soil water potentials were positively correlated with river discharge; and ionic and isotopic (δ18O of H2O) values of the soil solution closely matched those of river water. Thus, our ability to elucidate biological control over ecosystem N retention was confounded by riverine nutrient inputs. Climatic warming is likely to extend the season of glacial melt and increase riverine nutrient inputs to forests along glacially-fed rivers.  相似文献   

2.

Background and aims

Under chronically elevated N deposition, N retention mainly occur at high soil C-to-N ratio. This may be mediated through soil microbes, such as ectomycorrhizal (EM) fungi, saprotrophic fungi and bacteria, and the aim of this study was to evaluate the relationship between soil microbes and forest floor C-to-N ratios.

Methods

Soil samples from 33 Norway spruce (Picea abies (L.) H. Karst) forests in Denmark and southern Sweden in a forest floor C-to-N ratio gradient (ranging from 14 to 35) were analysed regarding the content of phospholipid fatty acids (PLFAs) to estimate their soil microbial community composition and the relative biomasses of different microbial groups. The relation of EM biomass to total fungal biomass was estimated as the loss of the fungal PLFA 18:2ω6,9 during incubation of soils and the production of EM mycelia was estimated using fungal in-growth mesh bags. The soil microbial variables were correlated to forest floor C-to-N ratio, NO 3 - leaching, soil pH and stand age.

Results

Fungal proportions of microbial biomass, EM to total fungi and EM mycelial production were all positively related to C-to-N ratio, while NO 3 - leaching was negatively related to C-to-N ratio.

Conclusions

Both EM and saprotrophic fungi change with forest floor C-to-N ratios and appear to play a central role in N retention in forest soil. A better understanding of the mechanisms behind this process may be revealed if the role of recalcitrant fungal metabolites for N retention (and soil C sequestration) can be identified. Research along this line deserves further studies.  相似文献   

3.
Temperate forests receive some of the highest rates of nitrogen (N) deposition in the world. While numerous studies have investigated the effects of N enrichment on forests, there is little consensus on why some forests become N saturated while others do not. To investigate this, we used a multi-factor meta-analysis to simultaneously estimate the relative importance of several environmental, experimental, and anthropogenic variables on nitrate (NO3 ?) leaching in response to experimental N addition. Given that overstory tree species composition and soil C:N ratio influence forest responses to N, we hypothesized that forests dominated by arbuscular mycorrhizal (AM) trees would respond differently than forests dominated by ectomycorrhizal (ECM) trees in the context of forest susceptibility to NO3 ? leaching. We found that mycorrhizal association is an important predictor of NO3 ? leaching, and AM-dominated forests leach more NO3 ? in response to N deposition than ECM forests. Additionally, we found that the amount of total N added, ambient N deposition rates, and the form of N added influenced the magnitude of the NO3 ? leaching response. Given that the mycorrhizal associations of most temperate trees are known, our results suggest that this functional grouping may be useful in identifying forests that are most susceptible to NO3 ? leaching.  相似文献   

4.
To investigate the potential role of microbial community composition in soil carbon and nitrogen cycling, we transplanted soil cores between a grassland and a conifer ecosystem in the Sierra Nevada California and measured soil process rates (N-mineralization, nitrous oxide and carbondioxide flux, nitrification potential), soil water and temperature, and microbial community parameters (PLFA and substrate utilization profiles) over a 2 year period. Our goal was to assess whether microbial community composition could be related to soil process rates independent of soil temperature and water content. We performed multiple regression analyses using microbial community parameters and soil water and temperature as X-variables and soil process rates and inorganic N concentrations as Y-variables. We found that field soil temperature had the strongest relationship with CO2 production and soil NH4+ concentration, while microbial community characteristics correlated with N2O production, nitrification potential, gross N-mineralization, and soil NO3 concentration, independent of environmentalcontrollers. We observed a relationship between specific components of the microbial community (as determined by PLFA) and soil processes,particularly processes tightly linked to microbial phylogeny (e.g. nitrification). The most apparent change in microbial community composition in response to the 2 year transplant was a change in relative abundance of fungi (there was only one significant change in PLFA biomarkers for bacteria during 2 years). The relationship between microbial community composition and soil processes suggests that prediction of ecosystem response to environmental change may be improved by recognizing and accounting for changes in microbial community composition and physiological ecology.  相似文献   

5.
Nutrient fluxes in terrestrial ecosystems are governed by complex biological and physical interactions. Ecologists’ mechanistic understanding of these interactions has focused on biological controls including plant uptake and microbial processing. However, ecologists and hydrologists have recently demonstrated that physical controls are also important. Here, we show that within-site spatial variation in soil solution N concentrations is a function of soil clay content across a globally diverse array of field sites. Clay content explained 35 and 53% of the coefficient of variation (CV) in soil solution nitrate (NO3 ?) and dissolved organic nitrogen (DON), respectively. The CV of soil hydraulic conductivity is a similar function of clay content, suggesting that soil hydrology may be a significant mechanism affecting variation in soil solution N. Although vegetation physiognomy and soil C/N ratios are known to affect soil solution N concentrations, neither was significantly related to within-site spatial variation in NO3 ? or DON. However, the spatial variation of NO3 ? and DON was greater in younger forests than in paired older forests. Our data show that the heterogeneity of an important resource, soil solution N, is a predictable function of clay content. Resource heterogeneity, such as that described here for soil solution N, can affect population, community, and ecosystem processes.  相似文献   

6.
Increases in the deposition of atmospheric nitrogen (N) influence N cycling in forest ecosystems and can result in negative consequences due to the leaching of nitrate into groundwaters. From December 1995 to February 1998, the Pan-European Programme for the Intensive and Continuous Monitoring of Forest Ecosystems measured forest conditions at a plot scale for conifer and broadleaf forests, including the performance of time series of soil solution chemistry. The influence of various ecosystem conditions on soil solution nitrate concentrations at these forest plots (n = 104) was then analyzed with a statistical model. Soil solution nitrate concentrations varied by season, and summer concentrations were approximately 25% higher than winter ones. Soil solution nitrate concentrations increased dramatically with throughfall (and bulk precipitation) N input for both broadleaf and conifer forests. However, at elevated levels of throughfall N input (more than 10 kg N ha–1 y–1), nitrate concentrations were higher in broadleaf than coniferous stands. This tree-specific difference was not observed in response to increased bulk precipitation N input. In coniferous stands, throughfall N input, foliage N concentration, organic layer carbon–nitrogen (C:N) ratio, and nitrate concentrations covaried. Soil solution nitrate concentrations in conifer plots were best explained by a model with throughfall N and organic layer C:N as main factors, where C:N ratio could be replaced by foliage N. The organic layer C:N ratio classes of more than 30, 25–30, and less than 25, as well as the foliage N (mg N g–1) classes of less than 13, 13–17, and more than 17, indicated low, intermediate, and high risks of nitrate leaching, respectively. In broadleaf forests, correlations between N characteristics were less pronounced, and soil solution nitrate concentrations were best explained by throughfall N and soil pH (0–10-cm depth). These results indicate that the responses of soil solution nitrate concentration to changes in N input are more pronounced in broadleaf than in coniferous forests, because in European forests broadleaf species grow on the more fertile soils.  相似文献   

7.
南亚热带红椎和格木人工幼龄林土壤微生物群落结构特征   总被引:3,自引:0,他引:3  
洪丕征  刘世荣  王晖  于浩龙 《生态学报》2016,36(14):4496-4508
采用氯仿熏蒸浸提法和磷脂脂肪酸法(Phospholipids fatty acid,PLFA)研究了我国南亚热带地区非固氮树种红椎(Castanopsis hystrix)和固氮树种格木(Erythrophleum fordii)人工幼龄林土壤微生物生物量与微生物群落结构特征。结果表明,在旱季和雨季,红椎幼龄林土壤微生物总PLFAs量,细菌PLFAs量、放线菌PLFAs量及丛枝菌根真菌PLFAs量均大于格木幼龄林。红椎幼龄林土壤PLFA Shannon多样性指数(H_(PLFA))在旱季和雨季均大于格木幼龄林。主成分分析表明,土壤微生物群落结构组成受到林分类型和季节的双重影响。冗余分析表明,土壤硝态氮(NO_3~--N)含量、土壤含水量、p H及土壤微生物生物量氮(MBN)与特征磷脂脂肪酸之间呈显著相关关系。以上结果表明固氮树种格木与非固氮树种红椎人工幼龄林对土壤微生物生物量和群落结构的影响存在显著差异。  相似文献   

8.
Anthropogenic release of biologically available N has increased atmospheric N deposition in forest ecosystems, which may slow decomposition by reducing the lignolytic activity of white-rot fungi. We investigated the potential for atmospheric N deposition to reduce the abundance and alter the composition of lignolytic basidiomycetes in a regional network of four northern hardwood forest stands receiving experimental NO3 deposition (30 kg NO3 −N ha−1 year−1) for a decade. To estimate the abundance of basidiomycetes with lignolytic potential, we used PCR primers targeting laccase (polyphenol oxidase) and quantitative fluorescence PCR to estimate gene copy number. Natural variation in laccase gene size permitted use of length heterogeneity PCR to profile basidiomycete community composition across two sampling dates in forest floor and mineral soil. Although past work has identified significant and consistent negative effects of NO3 deposition on lignolytic enzyme activity, microbial biomass, soil respiration, and decomposition rate, we found no consistent effect of NO3 deposition on basidiomycete laccase gene abundance or community profile. Rather, laccase abundance under NO3 deposition was lower (−52%), higher (+223%), or unchanged, depending on stand. Only a single stand exhibited a significant change in basidiomycete laccase gene profile. Basidiomycete laccase genes occurring in mineral soil were a subset of the genes observed in the forest floor. Moreover, significant effects on laccase abundance were confined to the forest floor, suggesting that species composition plays some role in determining how lignolytic basidiomycetes are affected by N deposition. Community profiles differed between July and October sampling dates, and basidiomycete communities sampled in October had lower laccase gene abundance in the forest floor, but higher laccase abundance in mineral soil. Although experimental N deposition significantly suppresses lignolytic activity in these forests, this change is not related to the abundance or community composition of basidiomycete fungi with laccase genes. Understanding the expression of laccases and other lignolytic enzymes by basidiomycete fungi and other lignin-decaying organisms appears to hold promise for explaining the consistent decline in lignolytic activity elicited by experimental N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

10.
Late-successional forests in the upper Great Lakes region are susceptible to nitrogen (N) saturation and subsequent nitrate (NO3) leaching loss. Endemic wind disturbances (i.e., treefall gaps) alter tree uptake and soil N dynamics; and, gaps are particular susceptible to NO3 leaching loss. Inorganic N was measured throughout two snow-free periods in throughfall, forest floor leachates, and mineral soil leachates in gaps (300–2,000 m2, 6–9 years old), gap-edges, and closed forest plots in late-successional northern hardwood, hemlock, and northern hardwood–hemlock stands. Differences in forest water inorganic N among gaps, edges, and closed forest plots were consistent across these cover types: NO3 inputs in throughfall were significantly greater in undisturbed forest plots compared with gaps and edges; forest floor leachate NO3 was significantly greater in gaps compared to edges and closed forest plots; and soil leachate NO3 was significantly greater in gaps compared to the closed forest. Significant differences in forest water ammonium and pH were not detected. Compared to suspected N-saturated forests with high soil NO3 leaching, undisturbed forest plots in these late-successional forests are not losing NO3 (net annual gain of 2.8 kg ha−1) and are likely not N-saturated. Net annual NO3 losses were observed in gaps (1.3 kg ha−1) and gap-edges (0.2 kg ha−1), but we suspect these N leaching losses are a result of decreased plant uptake and increased soil N mineralization associated with disturbance, and not N-saturation.  相似文献   

11.
We analyzed soil organic matter distribution and soil solution chemistry in plots with and without earthworms at two sugar maple (Acer saccharum)–dominated forests in New York State, USA, with differing land-use histories to assess the influence of earthworm invasion on the retention or loss of soil carbon (C) and nitrogen (N) in northern temperate forests. Our objectives were to assess the influence of exotic earthworm invasion on (a) the amount and depth distribution of soil C and N, (b) soil 13C and 15N, and (c) soil solution chemistry and leaching of C and N in forests with different land-use histories. At a relatively undisturbed forest site (Arnot Forest), earthworms eliminated the thick forest floor, decreased soil C storage in the upper 12 cm by 28%, and reduced soil C:N ratios from 19.2 to 15.3. At a previously cultivated forest site with little forest floor (Tompkins Farm), earthworms did not influence the storage of soil C or N or soil C:N ratios. Earthworms altered the stable isotopic signature of soil at Arnot Forest but not at Tompkins Farm; the alteration of stable isotopes indicated that earthworms significantly increased the loss of forest floor C but not N from the soil profile at Arnot Forest. Nitrate (NO3) concentrations in tension and zero-tension lysimeters were much greater at Tompkins Farm than Arnot Forest, and earthworms increased NO3 leaching at Tompkins Farm. The results suggest that the effect of earthworm invasion on the distribution, retention, and solution chemistry of soil C and N in northern temperate forests may depend on the initial quantity and quality of soil organic matter at invaded sites.  相似文献   

12.
A network of long-term monitoring sites on nitrogen (N) input and output of forests across Germany showed that a number of Germany's forests are subject to or are experiencing N saturation and that spruce (Picea abies) stands have high risk. Our study was aimed at (1) quantifying the changes in gross rates of microbial N cycling and retention processes in forest soils along an N enrichment gradient and (2) relating the changes in soil N dynamics to N losses. We selected spruce sites representing an N enrichment gradient (indicated by leaching : throughfall N ratios) ranging from 0.04–0.13 (low N),≤0.26 (intermediate N enrichment) to≥0.42 (highly N enriched). To our knowledge, our study is the first to report on mechanistic changes in gross rates of soil N cycling and abiotic NO3 retention under ambient N enrichment gradient. Gross N mineralization, NH4+ immobilization, gross nitrification, and NO3 immobilization rates increased up to intermediate N enrichment level and somewhat decreased at highly N-enriched condition. The turnover rates of NH4+ and microbial N pools increased while the turnover rates of the NO3 pool decreased across the N enrichment gradient. Abiotic immobilization of NH4+ did not differ across sites and was lower than that of NO3. Abiotic NO3 immobilization decreased across the N enrichment gradient. Microbial assimilation and turnover appeared to contribute largely to the retention of NH4+. The increasing NO3 deposition and decreasing turnover rates of the NO3 pool, combined with decreasing abiotic NO3 retention, possibly contributed to increasing NO3 leaching and gaseous emissions across the N enrichment gradient. The empirical relationships of changes in microbial N cycling across the N enrichment gradient may be integrated in models used to predict responses of forest ecosystems (e.g. spruce) to increasing N deposition.  相似文献   

13.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

14.
Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2ω6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha−1 y−1 compared with 10 kg N ha−1 y−1) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1ω5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1ω9, a17:0 and 18:1ω7, while some were negatively affected by pH, such as i15:0, 16:1ω7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1ω7c and 16:1ω9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2ω6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.  相似文献   

15.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

16.
Since the late 1970s, several long‐term ecological studies were conducted to better understand the biogeochemical functioning of Norway spruce stands in the Ardennes as these nutrient‐poor ecosystems were subject to high levels of acid deposition and exhibited symptoms of tree health decline. Between 1978 and 2009, acid deposition declined sharply, especially sulfur and to a lesser extent nitrogen deposition. The aim of this study was (i) to determine if the Norway spruce stands recovered after the reduction of acid deposition and (ii) to explain why such a recovery occurred or not. Therefore, we collected data from different projects carried out in the Ardennes to characterize the long‐term temporal trends in soil solution chemistry, foliar nutrition, and crown condition. In parallel, a model describing the nutrient cycling in forests (NuCM) was calibrated and used to check the consistency of the observed temporal trends and to explain them. The soil solution concentration of most of the elements decreased between 1978 and 2002, which was ascribed to a decrease in atmospheric deposition. For potassium, a decline in the exchangeable pool was also showed based on the simulation carried out with NuCM. As nitrogen (N) deposition remained at an elevated level, Norway spruce stands were progressively saturated in N and mineral nutrition became more and more unbalanced. Except the foliar N and Al concentration that remained constant and increased respectively, the foliar concentration of all other nutrients decreased between 1993 and 2009, which can be explained by the decrease in ion concentration in solution. These nutritional disorders weakened trees and were probably exacerbated during the 2003 summer drought, after which symptoms of vitality loss progressively appeared. In these N‐saturated ecosystems, the N cycle was disrupted by this health decline, which increased NO3? leaching reinforcing soil acidification and risk of aluminum (Al) toxicity.  相似文献   

17.
We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose (13C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 ? as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.  相似文献   

18.
Amino acid uptake in deciduous and coniferous taiga ecosystems   总被引:2,自引:0,他引:2  
We measured in situ uptake of amino acids and ammonium across deciduous and coniferous taiga forest ecosystems in interior Alaska to examine the idea that late successional (coniferous) forests rely more heavily on dissolved organic nitrogen (DON), than do early successional (deciduous) ecosystems. We traced 15N-NH4+ and 13C-15N-amino acids from the soil solution into plant roots and soil pools over a 24 h period in stands of early successional willow and late successional black spruce. Late successional soils have much higher concentrations of amino acid in soil solution and a greater ratio of DON to dissolved inorganic N (DIN) (ammonium plus nitrate) than do early successional soils. Moreover, late successional coniferous forests exhibit higher rates of soil proteolytic activity, but lower rates of inorganic N turnover. Differences in ammonium and amino acid uptake by early successional willow stands were insignificant. By contrast, the in situ uptake of amino acid by late successional black spruce forests were approximately 4-fold greater than ammonium uptake. The relative difference in uptake of ammonium and amino acids in these forests was approximately proportional to the relative difference of these N forms in the soil solution. Thus, we suggest that differences in uptake of different N forms across succession in these boreal forests largely reflect edaphic variation in available soil N (composition), rather than any apparent physiological specialization to absorb particular forms of N. These finding are relevant to our understanding of how taiga ecosystems may respond to increases in temperature, fire frequency, N deposition, and other potential consequences of global change.  相似文献   

19.
Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.  相似文献   

20.
天山林区不同类型群落土壤氮素对冻融过程的动态响应   总被引:1,自引:0,他引:1  
季节性冻融过程对北方温带森林土壤氮素的转化与流失具有重要影响,但不同类型群落对冻融过程响应的差异尚不明确。通过在林地、草地、灌丛上设置系列监测样地,采用原位培养的方法,利用林冠遮挡形成的自然雪被厚度差异,监测分析了冻融期天山林区不同群落表层土壤(0—15 cm)的氮素动态及净氮矿化速率间的差异。结果表明:(1)不同类型群落土壤的铵态氮(NH+4-N)含量、微生物量氮(MBN)含量基本与土壤(5 cm)温度呈正相关,深冻期林地土壤铵态氮含量低于其他群落类型而硝态氮含量高于其他群落类型;(2)硝态氮(NO-3-N)为天山林区季节性冻融期间土壤矿质氮的主体,占比达78.4%。灌丛土壤硝态氮流失风险较大,融化末期较融化初期灌丛土壤硝态氮含量下降了64.6%;(3)冻融时期对整体氮素矿化速率影响显著,群落类型对氨化速率影响显著;(4)天山林区土壤氮素在冻结期主要以氮固持为主。通过揭示不同类型群落土壤氮素对冻融格局的响应,能够助益于对北方林区冬季土壤氮素循环的认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号