首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Carotenoids are known to function as light-harvesting pigments and they play important roles in photoprotection in both plant and bacterial photosynthesis. These functions are also important for carotenoids in photosystem II. In addition, beta-carotene recently has been found to function as a redox intermediate in an alternate pathway of electron transfer within photosystem II. This redox role of a carotenoid in photosystem II is unique among photosynthetic reaction centers and stems from the very highly oxidizing intermediates that form in the process of water oxidation. In this minireview, an overview of the electron-transfer reactions in photosystem II is presented, with an emphasis on those involving carotenoids. The carotenoid composition of photosystem II and the physical methods used to study the structure of the redox-active carotenoid are reviewed. Possible roles of carotenoid cations in photoprotection of photosystem II are discussed.  相似文献   

2.
Beta-carotene is a strong singlet oxygen quencher and antioxidant. Epidemiologic studies have implied that an above average intake of the carotenoid might reduce cancer risks. Earlier studies found that the carotenoid, when added to commercial closed-formula rodent diets, provided significant photoprotection against UV-carcinogenesis in mice. Clinical intervention trials found that beta-carotene supplementation evoked no change in incidence of nonmelanoma skin cancer. However, when smokers were supplemented with the carotenoid a significant increase in lung cancer resulted. Recently, employing a beta-carotene supplemented semi-defined diet, not only was no photoprotective effect found, but significant exacerbation of UV-carcinogenesis occurred. Earlier, a mechanism, based upon redox potential of interacting antioxidants, was proposed in which beta-carotene participated with vitamins E and C to efficiently repair oxy radicals and, thus, thought to provide photoprotection. In this schema, alpha-tocopherol would first intercept an oxy radical. In terminating the radical-propagating reaction, the tocopherol radical cation is formed which, in turn, is repaired by beta-carotene to form the carotenoid radical cation. This radical is repaired by ascorbic acid (vitamin C). As the carotenoid radical cation is a strongly oxidizing radical, unrepaired it could contribute to the exacerbating effect on UV-carcinogenesis. Thus, vitamin C levels could influence the levels of the pro-oxidant carotenoid radical cation. However, when hairless mice were fed beta-carotene supplemented semi-defined diet with varying levels of vitamin C (0-5590 mg kg(-1) diet) no effect on UV-carcinogenesis was observed. Lowering alpha-tocopherol levels did result in further increase of beta-carotene exacerbation, suggesting beta-carotene and alpha-tocopherol interaction. It was concluded that the non-injurious or protective effect of beta-carotene found in the closed-formula rations might depend on interaction with other dietary factors that are absent in the semi-defined diet. At present, beta-carotene use as a dietary supplement for photoprotection should be approached cautiously.  相似文献   

3.
Xanthophylls (oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5) or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch (lutein) and beta-branch (zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.  相似文献   

4.
How carotenoids function in photosynthetic bacteria   总被引:16,自引:0,他引:16  
Carotenoids are essential for the survival of photosynthetic organisms. They function as light-harvesting molecules and provide photoprotection. In this review, the molecular features which determine the efficiencies of the various photophysical and photochemical processes of carotenoids are discussed. The behavior of carotenoids in photosynthetic bacterial reaction centers and light-harvesting complexes is correlated with data from experiments carried out on carotenoids and model systems in vitro. The status of the carotenoid structural determinations in vivo is reviewed.  相似文献   

5.
Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment–protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, β-cryptoxanthin, β-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing π-chain length. However, zeaxanthin and β-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of β-carotene, despite all of these molecules having 11 conjugated carbon–carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment–protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.  相似文献   

6.
Telfer A  Frolov D  Barber J  Robert B  Pascal A 《Biochemistry》2003,42(4):1008-1015
We present a spectroscopic characterization of the two nonequivalent beta-carotene molecules in the photosystem II reaction center. Their electronic and vibrational properties exhibit significant differences, reflecting a somewhat different configuration for these two cofactors. Both carotenoid molecules are redox-active and can be oxidized by illumination of the reaction centers in the presence of an electron acceptor. The radical cation species show similar differences in their spectroscopic properties. The results are discussed in terms of the structure and unusual function of these carotenoids. In addition, the attribution of resonance Raman spectra of photosystem II preparations excited in the range 800-900 nm is discussed. Although contributions of chlorophyll cations cannot be formally ruled out, our results demonstrate that these spectra mainly arise from the cation radical species of the two carotenoids present in photosystem II reaction centers.  相似文献   

7.
Carotenoids have two major functions in bacterial photosynthesis, photoprotection and accessory light harvesting. The genes encoding many carotenoid biosynthetic pathways have now been mapped and cloned in several different species, and the availability of cloned genes which encode the biosynthesis of carotenoids not found in the photosynthetic genus Rhodobacter opens up the possibility of introducing a wider range of foreign carotenoids into the bacterial photosynthetic apparatus than would normally be available by producing mutants of the native biosynthetic pathway. For example, the crt genes from Erwinia herbicola, a gram-negative nonphotosynthetic bacterium which produces carotenoids in the sequence of phytoene, lycopene, beta-carotene, beta-cryptoxanthin, zeaxanthin, and zeaxanthin glucosides, are clustered within a 12.8-kb region and have been mapped and partially sequenced. In this paper, part of the E. herbicola crt cluster has been excised and expressed in various crt strains of Rhodobacter sphaeroides. This has produced light-harvesting complexes with a novel carotenoid composition, in which the foreign carotenoids such as beta-carotene function successfully in light harvesting. The outcome of the combination of the crt genes in R. sphaeroides with those from E. herbicola has, in some cases, resulted in an interesting rerouting of the expected biosynthetic sequence, which has also provided insights into how the various enzymes of the carotenoid biosynthetic pathway might interact. Clearly this approach has considerable potential for studies on the control and organization of carotenoid biosynthesis, as well as providing novel pigment-protein complexes for functional studies.  相似文献   

8.
Beta-carotene has been identified as an intermediate in a secondary electron transfer pathway that oxidizes Chl(Z) and cytochrome b(559) in Photosystem II (PS II) when normal tyrosine oxidation is blocked. To test the redox function of carotenoids in this pathway, we replaced the zeta-carotene desaturase gene (zds) or both the zds and phytoene desaturase (pds) genes of Synechocystis sp. PCC 6803 with the phytoene desaturase gene (crtI) of Rhodobacter capsulatus, producing carotenoids with shorter conjugated pi-electron systems and higher reduction potentials than beta-carotene. The PS II core complexes of both mutant strains contain approximately the same number of chlorophylls and carotenoids as the wild type but have replaced beta-carotene (11 double bonds), with neurosporene (9 conjugated double bonds) and beta-zeacarotene (9 conjugated double bonds and 1 beta-ionylidene ring). The presence of the ring appears necessary for PS II assembly. Visible and near-infrared spectroscopy were used to examine the light-induced formation of chlorophyll and carotenoid radical cations in the mutant PS II core complexes at temperatures from 20 to 160 K. At 20 K, a carotenoid cation radical is formed having an absorption maximum at 898 nm, an 85 nm blue shift relative to the beta-carotene radical cation peak in the WT, and consistent with the formation of the cation radical of a carotenoid with 9 conjugated double bonds. The ratio of Chl(+)/Car(+) is higher in the mutant core complexes, consistent with the higher reduction potential for Car(+). As the temperature increases, other carotenoids become accessible to oxidation by P(680)(+).  相似文献   

9.
Differential kinetic absorption spectra were measured during actinic illumination of photosystem II reaction centres and core complexes in the presence of electron acceptors silicomolybdate and ferricyanide. The spectra of samples with ferricyanide differ from those with both ferricyanide and silicomolybdate. Near-infrared spectra show temporary beta-carotene and peripheral chlorophyll oxidation during room temperature actinic illumination. Peripheral chlorophyll is photooxidized even after decay of beta-carotene oxidation activity and significant reduction of beta-carotene content in both reaction centres and photosystem II core complexes. Besides, new carotenoid cation is observed after about 1 s of actinic illumination in the reaction centres when silicomolybdate is present. Similar result was observed in PSII core complexes. HPLC analyses of illuminated reaction centres reveal several novel carotenoids, whereas no new carotenoid species were observed in HPLC of illuminated core complexes. Our data support the proposal that pigments of inner antenna are a sink of cations originating in the photosystem II reaction centre.  相似文献   

10.
Protonation of the lumen-exposed residues of some photosynthetic complexes in the grana membranes occurs under conditions of high light intensity and triggers a major photoprotection mechanism known as energy dependent nonphotochemical quenching. We have studied the role of protonation in the structural reorganization and thermal stability of isolated grana membranes. The macroorganization of granal membrane fragments in protonated and partly deprotonated state has been mapped by means of atomic force microscopy. The protonation of the photosynthetic complexes has been found to induce large-scale structural remodeling of grana membranes—formation of extensive domains of the major light-harvesting complex of photosystem II and clustering of trimmed photosystem II supercomplexes, thinning of the membrane, and reduction of its size. These events are accompanied by pronounced thermal destabilization of the photosynthetic complexes, as evidenced by circular dichroism spectroscopy and differential scanning calorimetry. Our data reveal a detailed nanoscopic picture of the initial steps of nonphotochemical quenching.  相似文献   

11.
The kinetics of response to strong light have been examined in deeply shaded leaves of the tropical tree legume (Inga sp.) which have extraordinarily high levels of the alpha-xanthophyll lutein-epoxide that are co-located in pigment-protein complexes of the photosynthetic apparatus with the beta-xanthophyll violaxanthin. As in other species, rapidly reversible photoprotection (measured as non-photochemical chlorophyll fluorescence quenching) is initiated within the time frame of sun-flecks (minutes), before detectable conversion of violaxanthin to antheraxanthin or zeaxanthin. Photoprotection is stabilized within hours of exposure to strong light by simultaneously engaging the reversible violaxanthin cycle and a slowly reversible conversion of lutein-epoxide to lutein. It is proposed that this lutein 'locks in' a primary mechanism of photoprotection during photoacclimation in this species, converting efficient light-harvesting antennae of the shade plant into potential excitation dissipating centres. It is hypothesized that lutein occupies sites L2 and V1 in light-harvesting chlorophyll protein complexes of photosystem II, facilitating enhanced photoprotection through the superior singlet and/or triplet chlorophyll quenching capacity of lutein.  相似文献   

12.
The electronic properties of carotenoid molecules underlie their multiple functions throughout biology, and tuning of these properties by their in vivo locus is of vital importance in a number of cases. This is exemplified by photosynthetic carotenoids, which perform both light-harvesting and photoprotective roles essential to the photosynthetic process. However, despite a large number of scientific studies performed in this field, the mechanism(s) used to modulate the electronic properties of carotenoids remain elusive. We have chosen two specific cases, the two β-carotene molecules in photosystem II reaction centers and the two luteins in the major photosystem II light-harvesting complex, to investigate how such a tuning of their electronic structure may occur. Indeed, in each case, identical molecular species in the same protein are seen to exhibit different electronic properties (most notably, shifted absorption peaks). We assess which molecular parameters are responsible for this in vivo tuning process and attempt to assign it to specific molecular events imposed by their binding pockets.  相似文献   

13.
In photosynthetic organisms, the utilization of solar energy to drive electron and proton transfer reactions across membranes is performed by pigment-protein complexes including bacterial reaction centers (BRCs) and photosystem II. The well-characterized BRC has served as a structural and functional model for the evolutionarily-related photosystem II for many years. Even though these complexes transfer electrons and protons across cell membranes in analogous manners, they utilize different secondary electron donors. Photosystem II has the unique ability to abstract electrons from water, while BRCs use molecules with much lower potentials as electron donors. This article compares the two complexes and reviews the factors that give rise to the functional differences. Also discussed are the modifications that have been performed on BRCs so that they perform reactions, such as amino acid and metal oxidation, which occur in photosystem II.  相似文献   

14.
Photosystem II of higher plants is a multisubunit transmembrane complex composed of a core moiety and an extensive peripheral antenna system. The number of antenna polypeptides per core complex is modulated following environmental conditions in order to optimize photosynthetic performance. In this study, we used a barley (Hordeum vulgare) mutant, viridis zb63, which lacks photosystem I, to mimic extreme and chronic overexcitation of photosystem II. The mutation was shown to reduce the photosystem II antenna to a minimal size of about 100 chlorophylls per photosystem II reaction centre, which was not further reducible. The minimal photosystem II unit was analysed by biochemical methods and by electron microscopy, and found to consist of a dimeric photosystem II reaction centre core surrounded by monomeric Lhcb4 (chlorophyll protein 29), Lhcb5 (chlorophyll protein 26) and trimeric light-harvesting complex II antenna proteins. This minimal photosystem II unit forms arrays in vivo, possibly to increase the efficiency of energy distribution and provide photoprotection. In wild-type plants, an additional antenna protein, chlorophyll protein 24 (Lhcb6), which is not expressed in viridis zb63, is proposed to associate to this minimal unit and stabilize larger antenna systems when needed. The analysis of the mutant also revealed the presence of two distinct signalling pathways activated by excess light absorbed by photosystem II: one, dependent on the redox state of the electron transport chain, is involved in the regulation of antenna size, and the second, more directly linked to the level of photoinhibitory stress perceived by the cell, participates in regulating carotenoid biosynthesis.  相似文献   

15.
The interaction of dietary carotenoids with radical species   总被引:4,自引:0,他引:4  
Dietary carotenoids react with a wide range of radicals such as CCl3O2*, RSO2*, NO2*, and various arylperoxyl radicals via electron transfer producing the radical cation of the carotenoid. Less strongly oxidizing radicals, such as alkylperoxyl radicals, can lead to hydrogen atom transfer generating the neutral carotene radical. Other processes can also arise such as adduct formation with sulphur-centered radicals. The oxidation potentials have been established, showing that, in Triton X-100 micelles, lycopene is the easiest carotenoid to oxidize to its radical cation and astaxanthin is the most difficult. The interaction of carotenoids and carotenoid radicals with other antioxidants is of importance with respect to anti- and possibly pro-oxidative reactions of carotenoids. In polar environments the vitamin E (alpha-tocopherol) radical cation is deprotonated (TOH*+ --> TO* + H+) and TO* does not react with carotenoids, whereas in nonpolar environments such as hexane, TOH*+ is converted to TOH by hydrocarbon carotenoids. However, the nature of the reaction between the tocopherol and various carotenoids shows a marked variation depending on the specific tocopherol homologue. The radical cations of the carotenoids all react with vitamin C so as to "repair" the carotenoid.  相似文献   

16.
17.
A summary is presented of recent work on the photochemistry of chlorophyll in solution. It is shown that reactions occur which are close counterparts ofin vivo photoprocesses. These are (a) photoproduction of chlorophyll cation radical (analog of photosystem I reaction centre primary photoprocess), (b) one-electron phototransfer from bacterio-chlorophyll to quinone (analog of bacterial reaction centre primary photoprocess), (c) chlorophyll photosensitized one-electron transfer from hydroxylic compounds to quinone (analog of photosystem II reaction centre photoprocess). The mechanisms of these reactions and their implications for photosynthetic energy conversion are discussed.  相似文献   

18.
Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.  相似文献   

19.
Photoprotection in plants: a new light on photosystem II damage   总被引:4,自引:0,他引:4  
Sunlight damages photosynthetic machinery, primarily photosystem II (PSII), and causes photoinhibition that can limit plant photosynthetic activity, growth and productivity. The extent of photoinhibition is associated with a balance between the rate of photodamage and its repair. Recent studies have shown that light absorption by the manganese cluster in the oxygen-evolving complex of PSII causes primary photodamage, whereas excess light absorbed by light-harvesting complexes acts to cause inhibition of the PSII repair process chiefly through the generation of reactive oxygen species. As we review here, PSII photodamage and the inhibition of repair are therefore alleviated by photoprotection mechanisms associated with avoiding light absorption by the manganese cluster and successfully consuming or dissipating the light energy absorbed by photosynthetic pigments, respectively.  相似文献   

20.
Antenna systems of plants and green algae are made up of pigment-protein complexes belonging to the light-harvesting complex (LHC) multigene family. LHCs increase the light-harvesting cross-section of photosystems I and II and catalyze photoprotective reactions that prevent light-induced damage in an oxygenic environment. The genome of the moss Physcomitrella patens contains two genes encoding LHCb9, a new antenna protein that bears an overall sequence similarity to photosystem II antenna proteins but carries a specific motif typical of photosystem I antenna proteins. This consists of the presence of an asparagine residue as a ligand for Chl 603 (A5) chromophore rather than a histidine, the common ligand in all other LHCbs. Asparagine as a Chl 603 (A5) ligand generates red-shifted spectral forms associated with photosystem I rather than with photosystem II, suggesting that in P. patens, the energy landscape of photosystem II might be different with respect to that of most green algae and plants. In this work, we show that the in vitro refolded LHCb9-pigment complexes carry a red-shifted fluorescence emission peak, different from all other known photosystem II antenna proteins. By using a specific antibody, we localized LHCb9 within PSII supercomplexes in the thylakoid membranes. This is the first report of red-shifted spectral forms in a PSII antenna system, suggesting that this biophysical feature might have a special role either in optimization of light use efficiency or in photoprotection in the specific environmental conditions experienced by this moss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号