首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison.  相似文献   

2.
The covalent binding of trans-Pt (NH3)2Cl2 to the double-stranded poly(I)·poly(C) follows three types of reactions, depending on rb and the concentration of polynucleotide in the reaction mixture. At rb ? 0.1, the principal reaction is coordination to poly(I), giving rise to some destabilization of the double strand, as shown by uv and CD spectra, and a decrease in Tm values, giving rise to free loops of poly(C). At higher rb and low polynucleotide concentration, the free cytidine bases react with platinum bound on the complementary strand to form intramolecular (interstrand) crosslinks that restabilize the double-stranded structure. At high rb and high polynucleotide concentration, while the above reaction still occurs, the predominant one is the formation of intermolecular crosslinks. Under no conditions has strand separation been observed.  相似文献   

3.
The fixation of dien-Pt on poly(I)·poly(C) leads to only minor changes in the uv and CD spectra at ambient temperature, showing that there is little perturbation of the secondary structure in the rb range studied (up to 0.30). However, the melting profiles show two steps. The Tm for strand separation increases linearly from 61°C (rb = 0) to 80°C (rb = 0.18), after which it declines on further increasing the rb. The second melting step is not complete at 100°C, and the magnitude of the absorbance change in this second step also appears to be at a maximum at rb = 0.18. Although dien-Pt can only coordinate to one base, the nmr spectra at 80°C also show a second type of interaction with the adjacent bases, which is only destroyed in the presence of a strong denaturing agent, 5M guanidinium hydrochloride. From these results and the spectrophotometric data, we observe that dien-Pt forms a triple sandwich by hydrogen bonding of the platinum amino groups to the adjacent hypoxanthine bases (N7). The presence of these hydrogen bonds accounts for the increased stability (maximal at one Pt to three hypoxanthine bases) and their rupture is seen in the second melting step. No interaction has been observed with poly(C) strand. Reaction of dien-Pt with poly(I) shows the formation of the same triple sandwich structure in the nmr spectra.  相似文献   

4.
The effect of the interaction between poly(I)·poly(C) and cis-dichloro-diammineplatinum(II) (cis-Pt), its trans analogue and chloro-diethylene-triamminoplatinum(II) (dien-Pt) on interferon induction activity was investigated. The covalent monodentate fixation of the three compounds on N7 of inosine has different effects on the structure and thermostability of poly(I)·poly(C) which is well reflected by the interferon induction activity of the samples. Thus, the sandwich stabilization by dien-Pt at low binding ratios is manifested by an increased interferon induction and a high resistance towards RNAase degradation. The destabilization of the duplex by cis-Pt decreases interferon induction, accompanied by an increase in RNAase sensitivity of the complexes. In the case of trans-Pt the duplex structure is little perturbed and interferon induction is essentially maintained.  相似文献   

5.
The fixation of cis (NH3)2Cl2Pt(II) to poly(I)·poly(C) leads to the formation of two complexed species. One involves coordination to a single base (accounting for about 70% of the total platinum bound over the rb range 0.07–0.25) and the other to two bases which are not adjacent to each other but may be on the same strand and separated by a loop. Reaction of the platinum compound with poly(I) gives in addition to the above two species a minor one (about 15%, independent of rb over the range 0.05–0.30) in which the platinum is bound to two adjacent bases. The availability of such coordination reduces the dominance of the 1:1 species, which, however, remains the major one (ca. 55%).  相似文献   

6.
H J Hinz  W Haar  T Ackermann 《Biopolymers》1970,9(8):923-936
The enthalpies of the helix-coil transitions of the ordered polynucleotide systems of poly(inosinic acid)–poly(cytidylic acid) [poly(I + C)], (helical duplex), and of poly (inosinic acid) [poly(I + I + I)], (proposed secondary structure: a triple-stranded helical complex), were determined by using an adiabatic twin-vessel differential calorimeter. Measuring the temperature course of the heat capacity of the aqueous polymer solutions, the enthalpy values for the dissociation of the helical duplex poly (I + C) and the three-stranded helical complex poly(I + 1 + 1), respectively, were obtained by evaluating the additional heat capacity involved in the conformational change of the polynucleotide system in the transition range. The ΔH values of the helix-coil transition of poly (I + C) resulting from the analysis of the calorimetric measurements vary between the limits 6.5 ± 0.4 kcal/mole (I + C) and 8.4 ± 0.4 kcal/mole (I + C). depending on the variation of the cation concentration ranging from 0.063 mole cations kg H2O to 1.003 mole cations/kg H2O. The calorimetric investigation of an aqueous poly I solution (cation concentration 1.0 mole/kg H2O) yielded the enthalpy value ΔH = 1.9 ± 0.4 kcal/mole (I), a result which has been interpreted qualitatively following current models of inter- and intramolecular forces of biologically significant macromolecules. Additional information on the transition behavior of poly(I+ C)Was obtained by ultraviolet and infrared absorption measurements.  相似文献   

7.
L C Rainen  B D Stollar 《Biochemistry》1977,16(9):2003-2007
Rabbit antibodies to the triple-helical polynucleotide poly(A)-poly(U)-poly(I) were fractionated into three major antibody populations, each recognizing a different conformational feature of the triple-helical immunogen. Two distinct populations were purified from precipitates made with poly(A)-poly(U)-poly(U) and poly(A)-poly(I)-poly(I). The former reacted with double-stranded poly(A)-poly(U) or poly(I)-poly(C), and similar populations could be purified with either double-stranded form. The second population recognized the poly(A)-poly(I) region of the triple helix, and the third required all three strands for reactivity. These immunochemical studies suggest that the poly(A) and poly(U) have the same orientation in the triple-helicical poly(A)-poly(U)-poly(I) as in the double-helical poly(A)-poly(U), in which they have Watson-Crick base pairing.  相似文献   

8.
The interaction between poly (G) and poly (C) was investigated in neutral and acid medium by optical methods. Three main points arise from this investigation. (1) The formation of poly (G)·poly (C) was complete only above an ionic strength of about 0.6M [Na+]. Lowering the ionic strength increased the amounts of free poly (G) and free poly (C) that could be detected. (2) When titrating towards acid pH values a transition took place which was characterized by potentiometry, mixing curves, and circular dichroism: a three-stranded poly (G)·poly (C)·poly (C+) complex was formed analogous to the transition observed for the acid titration of poly (I)·poly (C). (3) Even when the poly (G)·poly (C) complex was incompletely formed (at low ionic strength) in neutral medium all poly (C) entered the triple-stranded complex.  相似文献   

9.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

10.
C. P. Beetz  G. Ascarelli 《Biopolymers》1982,21(8):1569-1586
We have measured the ir absorption of 5′CMP, 5′IMP, and poly(I)·poly(C) from ~25 to ~500 cm?1. From a comparison of the data with the previously measured absorption of the corresponding nucleosides and bases we can identify several “lines” associated with the deformation of the ribose ring. Out-of-plane deformation of the bases contributes strongly to vibrations near 200 cm?1. The same ribose vibrations observed in the nucleotides are found in poly(I)·poly(C). They sharpen with increasing water absorption. A study of the spectra of poly(I)·poly(C) as a function of the adsorbed water indicates that water does not contribute in a purely additive fashion to the polynucleotide spectrum but depends on the conformation of the helix. However, the only spectral feature that shifts drastically with conformation is near 45 cm?1. Measurements at cryogenic temperatures indicate some sharpening of the spectrum of poly(I)·poly(C). Instead, no sharpening is observed in the spectrum of the nucleotides. Shear degradation of poly(I)·poly(C) produces significant spectral changes in the 200-cm?1 region and sharpening of the features assigned to the low-frequency ribose-ring vibrations.  相似文献   

11.
Recognition of polynucleotides by antibodies to poly(I), poly(C).   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of anti poly(I). poly (C) Fab fragments to double or triple stranded polynucletides has been studied by fluorescence. Association constants were deduced from competition experiments. The comparison of the association constants leads to the conclusion that several atoms of the base residues do not interact with the amino acid residues of the binding site of Fab fragment while the hydroxyl groups of furanose rings interact. These results suggest that the Fab fragments do not bind to the major groove of the double stranded polynucleotides. An interaction between the C(2)O group of pyrimidine residues and Fab fragments cannot be excluded. Circular dichroism of poly(I). poly(C) or poly(I). poly(br5C)-Fab fragments complexes are very different from the circular dichroism of free polynucleotides which suggests a deformation of the polynucleotides bound to the Fab fragments.  相似文献   

12.
The conformation and the dynamic structure of single-stranded poly(U) and poly(C) in neutral aqueous solution have been investigated by 1H-nmr at two different frequencies (90 and 250 MHz) and at various temperatures. Measurements of proton chemical shifts, coupling constants JH-H, and proton relaxation times, T1, T2, versus temperature show a striking difference in conformation and in dynamic structure between the two polynucleotides studied. The temperature effect on δ and JH-H is found to be substantial for poly(C) and insignificant for poly(U). The S conformer is favored in poly(U), whereas the N conformer strongly predominates in poly(C) (?90%), similar to the case for RNAs. These results suggest that single-stranded poly(C) probably possesses a helical or partial helical structure, whereas poly(U) shows a clear preference for the random coil, in agreement with the optical results. The local motions of the ribose and base were studied at various temperatures by measurements on the relaxation times at 90 and 250 MHz. For a given temperature between 22 and 72°C, the ratio T1(90)/T1(250) is practically the same for all poly(U) protons, indicating that in this temperature interval the ribose base unit of poly(U) undergoes an isotropic motion characterized by a single correlation time τc. Above 52°C, poly(C) exhibits a dynamic structure similar to poly(U). Below this temperature, poly(C) exists in an equilibrium between randomly coiled and single-stranded helix forms. This situation is characterized by a strong cross-relaxation effect and T1 values corresponding to a relatively short apparent correlation time. An activation energy of 4 kcal/mol was determined for the motion of the ribose–base unit in both single-stranded polynucleotides.  相似文献   

13.
Double-helical poly(dG-dC) and poly(dA-dT) are DNA analogs in which the interactions between the two strands of the helix are, respectively, either the stronger G/C type or the weaker A/T type along the entire length of macromolecules. Thus, these synthetic polynucleotides can be considered as representatives of the most stable and the least stable DNA. In the investigations presented here, potentiometric titrations and stopped-flow kinetic experiments were carried out in order to compare the pH-induced helix–coil conformations (10°C and 150mM [Na+]) the pH of the helix–coil transition (pHm) is 12.81 for poly(dG-dC) and 11.76 for poly(dA-dT). The unwinding of double-helical poly(dG-dC) initiated by a sudden change in pH was found to be a simple exponential process with rate constants in the range of 200–600 sec?1, depending on the final value of the pH jump. The intramolecular double-helix formation of poly(dG-dC) was studied by lowering the pH of the solutions from a value above pHm to that below pHm in dilute solutions (15.5 ug/ml [polymer]). Under these conditions, the observed rewinding reactions displayed a major and two exponential phases, all of which were independent of polymer concentration. From the comparison of the results of poly(dA-dT) and poly(dG-dT) would unwind faster than poly(dG-dC). However, if the pH jumps are such that they present the same perturbation of these polymers relative to their pHm values, no significant differences exist between the rates of helix–coil conformation changes of poly(dA-dT) and poly(dG-dC).  相似文献   

14.
15.
The effect of the interaction between poly(I).poly(C) and cis-dichloro-diammineplatinum(II) (cis-Pt), its trans analogue and chloro-diethylene-triamminoplatinum(II) (dien-Pt) on interferon induction activity was investigated. The covalent monodentate fixation of the three compounds on N7 of inosine has different effects on the structure and thermostability of poly(I). poly(C) which is well reflected by the interferon induction activity of the samples. Thus, the sandwich stabilization by dien-Pt at low binding ratios is manifested by an increased interferon induction and a high resistance towards RNAase degradation. The destabilization of the duplex by cis-Pt decreases interferon induction, accompanied by an increase in RNAase sensitivity of the complexes. In the case of trans-Pt the duplex structure is little perturbed and interferon induction is essentially maintained.  相似文献   

16.
Poly(I).poly(C) covalently coupled to a matrix by one point fixation through its 3′ terminal stimulated both antiviral activity and interferon production in primary rabbit kidney (PRK) cells. This effect could not be accounted for by free polynucleotide released from the matrix into the medium. Penetration of the polynucleotide into the cells does not appear to be necessary for interferon production. A limited amount of matrix-bound poly(I).poly(C) was associated with the cells. Since it was sensitive to extraneous ribonuclease treatment, this poly(I).poly(C) was believed to be localized at the cell surface. Preliminary findings suggest that the binding of the polynucleotide to the cell is not directly proportional to the amount of interferon induced.  相似文献   

17.
The rabbit antiserum against poly(I).poly(C) purified by hydroxyapatite column chromatography contained three distinct antibodies. They were fractionated into three antibody populations by a series of precipitations (with poly(A).poly(U), poly(I), and poly(I).poly(C)) and their specificities were examined by quantitative complement fixation, double diffusion tests and radioimmunoassay. The first population was common to the double helical structure of double-stranded RNAs. The second was specific for poly(I) and the third was specific for poly(I).poly(C). These studies demonstrated that specific antibodies exclusively reactive with poly(I).poly(C) existed in the rabbit antiserum against poly(I).poly(C).  相似文献   

18.
S Higuchi  M Tsuboi 《Biopolymers》1966,4(8):837-854
The optical density–temperature profile of double-stranded poly(A + U), triple stranded poly(A + 2U), and double-stranded RNA from rice dwarf virus in solutions with and without poly-L -lysine has been examined. When poly-L -lysine is added, more than one melting temperature Tm is observed for poly(A + U) and poly(A + 2U). One of them is considered to correspond to the melting of the polynucleotide molecule free from poly-L -lysine, and another to the melting of a polynucleotide–poly-L -lysine complex. For rice dwarf virus RNA, the Tm assignable to the complex is not found to be lower than 99°C. In every case, however, the hyperchromicity observed at the Tm of the free poly-nucleotide molecule is lowered linearly as the amount of poly-L -lysine added to the solution increases. This fact is taken as indicating that there is a stoichiometric complex formed. The stoichiometric ratio lysine/nucleotide in each complex is determined by examining the relation between the amount of poly-L -lysine added to the solution and the percentage of hyperchromicity remaining at Tm of the free polynucleotide molecule. The ratio is found to be 2/3 for all of the three complexes. A discussion is given on the molecular conformations of four types of polynucleotide–polylysine complex hitherto found: (A) double-stranded DNA plus poly-L -lysine in which the lyslne/nucleotide ratio is 1, (B) three-stranded RNA [poly(A + 2U)] plus poly-L -lysine in which the ratio is 2/3, (C) double-stranded RNA [poly (A + U) or rice dwarf virus RNA] plus poly-L -lysine in which the ratio is 2/3, and (D) double-stranded RNA [poly(I + C)] plus poly-L -lysine in which the ratio is 1/2.  相似文献   

19.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号