首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):450-456
The relationship between calcium ions and gibberellic acid (GA3)-induced growth in the excised hypocotyl of lettuce (Lactuca sativa L.) was investigated. The short-term kinetics of growth responses were measured using a linear displacement transducer. Test solutions were added either as drops to the filter paper on which the hypocotyl stood (non-flow-past) or by switching solution flowing past the base of hypocotyl (flow-past), resulting in differences in growth behavior. Drops of CaCl2 added at a high concentration (10 mM) inhibited growth within a few minutes. This inhibition was reversed by ethylenediaminetetraacetic acid (EDTA). Drops of EDTA or ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid caused a rapid increase in growth rate. Growth induced by EDTA was not further promoted by GA3. A continuous H2O flow resulted in growth rates comparable to those in response to GA3. Addition of CaCl2 to the flow-past medium inhibited growth and this inhibition was reversed by a decrease in CaCl2 concentration. The growth rate was found to be a function of CaCl2 concentration. When a constant CaCl2 concentration was maintained by the flow-past medium, a shift in pH from 5.5 to 4.25 had no obvious effect on hypocotyl elongation. Gibberellic acid was found to reverse the inhibitory effect of CaCl2, causing an increase in growth rate similar to that found previously when GA3 was added to hypocotyls grown in H2O under non-flow-past conditions. We propose that gibberellin controls extension growth in lettuce hypocotyl sections by regulating the uptake of Ca2+ by the hypocotyl cells.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis(2-aminoethylether)-tetraacetic acid - GA gibberellin - GA3 gibberellic acid - IAA indole-3-acetic acid  相似文献   

2.
A procedure was developed to reduce premature bolting and flowering in Chinese cabbage grown in the field during the winter. This involved (a) the use of geothermic water as an inexpensive heat source for heating the transplants in the nursery; (b) application of the growth retardants daminozide (Alar) and paclobutrazol (PP333) to the heated plants before removing them to the field; and (c) application of daminozide to the plants in the field. This procedure markedly reduced stem elongation and the length of the internal stem in relation to the head without affecting the size of the head. Furthermore, application of daminozide in the field minimized the severity of tipburn, a common physiological disorder in Chinese cabbage fields. The result of such treatment was the production of high-quality Chinese cabbage heads which otherwise are unobtainable during the winter.Contribution from the Agricultural Research Organization, The volcani Center, Bet Dagan, Israel. No. 1172-E, 1984 series.  相似文献   

3.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

4.
Pulse-labeling of barley (Hordeum vulgare L. cv Himalaya) aleurone layers incubated for 13 hours in 2.5 micromolar gibberellic acid (GA3) with or without 5 millimolar CaCl2 shows that α-amylase isozymes 3 and 4 are not synthesized in vivo in the absence of Ca2+. A cDNA clone for α-amylase was isolated and used to measure α-amylase mRNA levels in aleurone layers incubated in the presence and absence of Ca2+. No difference was observed in α-amylase mRNA levels between layers incubated for 12 hours in 2.5 micromolar GA3 with 5 millimolar CaCl2 and layers incubated in GA3 alone. RNA isolated from layers incubated for 12 hours in GA3 with and without Ca2+ was translated in vitro and was found to produce the same complement of translation products regardless of the presence of Ca2+ in the incubation medium. Immunoprecipitation of translation products showed that the RNA for α-amylase synthesized in Ca2+-deprived aleurone layers was translatable. Ca2+ is required for the synthesis of α-amylase isozymes 3 and 4 at a step after mRNA accumulation and processing.  相似文献   

5.
IAA-oxidase activity increased in the stem as well as in the leaves of plants treated with GA3, SA and GA3 + SA during the early stages under inductive and non-inductive photoperiods, the activity being the highest in GA3 + SA-treated plants. An isoenzyme of IAA-oxidase with Rm 0.15 developed in the stem as well as in the leaves subsequent to 1 or 2 inductive treatments. As this band persisted till the end of the experiment, it may be associated with the initiation as well as development of floral buds. Another band (Rm 0.30) appears to be associated with the phenol (SA) as it developed in the stem as well as in the leaves of SA- and GA3 + SA-treated plants under both photoperiods. A band with Rm 0.60 developed in the leaves but not in the stem of GA3-, SA- and GA3 + SA-treated plants under both photoperiods.  相似文献   

6.
Chlorophyll loss in leaves of cut flowers of alstroemeria (Alstroemeria pelegrina L. cv. Westland) was rapid in darkness and counteracted by irradiation and treatment of the flowers with gibberellic acid (GA3). The mechanism of the effect of GA3 under dark conditions was investigated. The content of various carbohydrates in the leaves under dark conditions rapidly decreased; this was not influenced by treatment with GA3. indicating that the loss of carbohydrates in the leaves did not induce the loss of chlorophyll. Placing the cut flowers in various solutions of organic and inorganic nutrients exhibited no significant effect on the retention of chlorophyll in leaves of dark-senescing flowers. The total nitrogen content in leaves of dark-senescing cut flowers decreased with time. Leaves of GA3-treated flowers retained more nitrogen. In contrast, the buds of GA3-treated flowers retained less nitrogen during senescence in the dark than control buds. To investigate whether GA3 affects export of assimilates from the leaf to various parts of control and GA3-treated flowers, we labelled one leaf with radioactive carbon dioxide. 14C-assimilates accumulated preferentially in the flowers, in which the relative specific activity of the youngest floral buds was highest. No significant differences were observed in the distribution of 14C-labelled compounds between the buds of control and GA3-treated flowers. To establish the importance of source-sink relations for the loss of leaf chlorophyll we removed the flower buds (i. e. the strongest sink) from the cut flowers. This removal only slightly delayed chlorophyll loss as compared to the large delay caused by GA3-treatment. In addition, detached leaf tips exhibited chlorophyll loss in the dark, which was delayed by GA3-treatment in a fashion comparable with that in flowers. Together these data demonstrate that interactions of the leaves with other plant organs are not essential for chlorophyll loss during senescence in the dark. Additionally, we have found no evidence that GA3 delays the loss of chlorophyll by affecting the transport of nutrients within the cut flowers.  相似文献   

7.
The response of chrysanthemum plants to gibberellic acid (GA3) and daminozide, grown under 6% CuSO4 and water (control) spectral filters, was evaluated to determine the involvement of gibberellins in regulation of plant height under CuSO4 filters. The CuSO4 filter increased the red (R)/farred (FR), and blue (B)/R ratio (R=600–700 nm; FR =700–800 nm; B=400–500 nm) of transmitted light. PPF under 6% CuSO4 filter was reduced by about 34% compared to PPF under water filter which averaged about 750 μM·m?2·s?1. Control plants were shaded with Saran Wrap to ensure equal PPF as in the CuSO4 chamber. GA3 application increased plant height under both the control and CuSO4 filter, but the height increase under the CuSO4 filter was about 20% greater than that under the control filter. Daminozide treatment reduced plant height under the control and CuSO4 filter, but the height reduction in control plants was slightly greater than under the CuSO4 filter. The height reduction caused by daminozide was prevented by GA3 application in plants grown under the control or CuSO4 filter. The results suggest that GA3 may be partially involved in height reduction under CuSO4 filters.  相似文献   

8.
Tartrate-resistant acid phosphatase (TR-AcPh) from the ameba Amoeba proteus is represented by 3 bands (electromorphs) revealed after disk-electrophoresis in PAAG, using 2-naphthylphosphate as substrate. The presence of 50 mmol/l MgCl2 or CaCl2 in the incubation mixture increases activities of all electromorphs of TR-AcPh, while of ZnCl2, of two of them. The activity of the TR-AcPh electromorphs also rose after the 30-min incubation of the gels in MgCl2, CaCl2 or ZnCl2 (10 and 100 mM) before gel staining. However, 1 M ZnCl2, unlike 1 M CaCl2 or 1 M MgCl2, partly inactivated two out of three TR-AcPh electromorphs. The TR-AcPh electromorphs were inhibited by 1,10-phenanthroline (1,10-Ph), EDTA, and EGTA (all at a concentration of 5 mM) faster than by H2O2 (10 mM). The inactivation of the TR-AcPh electromorphs by the chelating agents did not depend (EGTA) or nearly did not depend (EDTA, 1,10-Ph) on their concentration (0.05, 0.5, and 5 mM). Out of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+, and Zn2+), only Zn ions reactivated the TR-AcPh electromorphs inactivated by 1,10-Ph, EDTA or EGTA. The TR-AcPh electromorphs were reactivated worse after inactivation by EGTA than by EDTA or 1,10-Ph. It is suggested that the active site of TR-AcPh contains the zinc ion essential for catalytic activity of this enzyme, i.e., TR-AcPh of A. proteus is a metallophosphatase performing the phosphomonoesterase activity in acidic medium.  相似文献   

9.
Lettuce tipburn is an irreversible physiological disorder caused by calcium deficiency that decreases the crop value. Breeding a tipburn-resistant cultivar is the only causal therapy in many cases. In this study, we investigated an efficient method to evaluate lettuce resistance to tipburn in vitro. Seedlings of 19 lettuce cultivars representing three head types were cultured on agar medium containing EGTA, which chelates Ca2+. The percentage of tipburned leaves decreased proportionally with EGTA concentration. Susceptible cultivars were distinguished at 0.01 mM EGTA, whereas resistant cultivars were classified at 1.0 mM EGTA. Based on mean values of tipburn measurements, tipburn susceptibility was highest for ‘Leaf Lettuce’, followed by ‘Butterhead Lettuce’, and then ‘Crisphead Lettuce’. Two cultivars were selected for further tests using hydroponic and pot culture. The rank order of susceptibility to tipburn in these experiments was consistent with that of the in vitro assay. The in vitro evaluation of lettuce susceptibility to calcium deficiency is useful for initial screening of lettuce cultivars against tipburn incidence. Resistant cultivars identified in this study are practical candidates for cultivation in controlled environments, such as a plant factory, while sensitive cultivars are also useful as indicator plants to monitor environmental conditions.  相似文献   

10.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

11.
12.
Growth Regulators and the Phytochrome-Mediated Dormancy of Celery Seeds   总被引:2,自引:0,他引:2  
Seeds of five celery (Apium graveolens L.) cultivars germinated at 15°C in the light or dark but at 22°C only in the light. This light requirement was overcome by treatment with a mixture of the gibberellins GA4 and GA7 (GA4/7) but interactions of cytokinins, daminozide, ethephon, EDTA and N-phenyl-N′-4-pyridylurea (NC5392) with GA4/7 were observed. Varietal differences in response to GA4/7 concentration and the requirement for cytokinins were related to the upper temperature limits for germination of the different cultivars. Seeds of cultivars responding to low concentrations of GA4/7 appeared to contain less natural inhibitor than those requiring either high concentrations of GA4/7 or cytokinin in addition to low GA4/7. The cytokinin requirement for germination was partially removed by leaching the seeds with water. Interaction studies with applied hormones indicated that in seeds incubated in the light inhibition by abscisic acid was partially alleviated by N6-benzyladenine but not by GA4/7 application. The implications of these results are discussed in relation to the involvement of natural plant hormones in the dormancy mechanism of celery seeds.  相似文献   

13.
BOUMA  D.; DOWLING  E. J. 《Annals of botany》1982,49(5):637-648
Leaves detached from subterranean clover plants (Trifolium subterraneumL.), grown in solution cultures at different phosphorus levels,were placed in water and in phosphate solutions. Losses in totalchlorophyll (a+b) of leaves in water were greater the lowerthe previous phosphorus supply to the plants from which theywere detached. In comparable leaves placed in phosphate solutionschlorophyll was maintained at levels at least as high as inleaves from non-deficient plants. For the latter there wereno differences between treated and untreated leaves. The differencesin colour change between treated and untreated leaves, therefore,increased with the deficiency in the phosphorus supply to theplants from which the leaves were detached, thus visibly reflectingtheir phosphorus status. A light intensity of 300 ft c (27 lx) or higher was necessaryfor maximum differences in leaf colour between treated and untreatedleaves, mainly because lower light levels reduced chlorophylllosses from leaves in water. Differences in colour between treated and untreated deficientleaves decreased with their age. However, valid comparisonsbetween treated and untreated leaf tissue could be ensured bythe use of treated and untreated leaflets. It is suggested that the results provide the basis for a simple,direct and visual diagnostic method, requiring no laboratoryequipment. Trifolium subterraneum L., subterranean clover, phosphorus deficiency, chlorophyll  相似文献   

14.
Salinity stress affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of salinity, different strategies of the application of nutrients with plant hormones are being adopted. The present study was carried out with an aim to find out whether application of calcium chloride (CaCl2) and gibberellic acid (GA3) could alleviate the detrimental effects of salinity stress on plant metabolism. Fifteen days old plants were supplied with (1) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (control, T0); (2) 0 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T1); (3) 0 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T2); (4) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 0 M GA3 (T3); (5) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 0 M GA3 (T4); (6) 150 mM NaCl + 0 mg CaCl2 kg?1 sand + 10?6 M GA3 (T5); (7) 150 mM NaCl + 10 mg CaCl2 kg?1 sand + 10?6 M GA3 (T6). To assess the response of the crop to NaCl, CaCl2 and GA3, plants were uprooted randomly at 60 days after sowing. The presence of NaCl in the growth medium decreased all the growth and physio-biochemical parameters, except electrolyte leakage, proline (Pro) and glycine betaine (GB) content, thiobarbituric acid reactive substances (TBARS), H2O2 content, activities of superoxide dismutase (SOD) and catalase (CAT) and leaf Na content, which exhibited an increase of 37.6, 29.3, 366.9, 107.5, 59.1, 17.1, 28.4 and 255.2%, respectively, compared to the control plants. However, application of CaCl2 in combination with GA3 appears to confer greater osmoprotection by the additive role with NaCl in Pro and GB accumulation. Although the activities of antioxidant enzymes (SOD, CAT and POX) were increased by salt stress, the combined application of CaCl2 and GA3 to salt-stressed plants further enhanced the activities of these enzymes by 25.1, 6.7 and 47.8%, respectively, compared to plants grown with NaCl alone. The present study showed that application of CaCl2 and GA3 alone as well as in combination mitigated the adverse effect of salinity, but combined application of these treatments proved more effective in alleviating the adverse effects of NaCl stress.  相似文献   

15.
Smillie, R. M., Nott, R., Hetherington, S. E. and Öyustt, G. 1987. Chilling injury and recovery in detached and attached leaves measured by chlorophyll fluorescence Chilling injury was compared in detached and attached leaves chilled at 0 or 0.5°C by measuring the decrease in induced chlorophyll fluorescence in vivo. The fluorescence parameter measured was FR, the maximal rate of rise of induced chlorophyll fluorescence emission after irradiating dark-adapted leaves. The plants used were bean, Phaseolus vulgaris L. cv. Pioneer, and maize, Zea mays L. cvs hybrid GH 390 and Northern Belle. Leaves were detached and placed on wet paper and covered with thin polyethylene film to prevent water loss during chilling. Leaves left attached on plants were treated similarly. When chilled in this way at 100% relative humidity, the chilling-induced decrease in FR was the same in detached and attached leaves. For the attached leaves, the same result was obtained whether just a single leaf was chilled or the whole plant. Expression of chilling injury was greatest in fully turgid leaves and comparisons can be invalid unless the water status of the detached and attached leaves are the same. Problems arising from diurnal fluctuations in water potential of plants grown in a glasshouse were circumvented by placing leaves on the wet filter paper under polyethylene film prior to chilling, which allowed high water potentials to be regained, or mist sprays in the glasshouse were employed. Determinations of the time course for changes in FR of maize (cv. Northern Belle) during chilling at 0°C showed that FR decreased exponentially, at the same rate (time to 50% decrease in FR was 9.3 h) in detached and attached leaves. Chilling injury was largely reversible for the first 20 h of chilling stress as both detached and attached leaves recovered their pre-chilling values of FR after a further 20 h at 20°C in darkness. Leaves chilled for 48 h showed partial recovery, while those chilled for 72 h did not recover. Recovery was impeded by light. Inability to recover from chilling as indicated by measurements of FR was paralleled by the incidence of visible symptoms of injury. It is concluded that detached and attached leaves behave similarly during chilling and short-term recovery, provided a similarity in treatments is rigorously maintained.  相似文献   

16.
The N-substituted phthalimide AC 94377 (1-(3-chlorophthalimido)-cyclohexanecarboxamide) was equally effective as a mixture of the gibberellins A4 and A7 (GA4/7) in breaking dormancy and stimulating germination of celery seeds when either was used in combination with ethephon or daminozide as a seed soak. Whereas seedlings emerging from GA4/7-treated seeds became etiolated in comparison with those from untreated seeds, those from AC 94377-treated seeds showed normal development. Preharvest sprays of gibberellic acid (GA3) increased the height of mature plants in comparison with untreated controls by about 16 per cent whereas AC 94377 was ineffective. The yield from GA3-treated plots was about 10 per cent greater than that from AC 94377-treated plots.  相似文献   

17.
Tipburn in lettuce is a physiological disorder expressed as a necrosis in the margins of young developing leaves and is commonly observed under saline conditions. Tipburn is usually attributed to Ca2+ deficiencies, and there has very limited research on other mechanisms that may contribute to tipburn development. This work examines whether symptoms are mediated by increased reactive oxygen species (ROS) production.Two butter lettuce (Lactuca sativa L.) varieties, Sunstar (Su) and Pontina (Po), with contrasting tipburn susceptibility were grown in hydroponics with low Ca2+ (0.5 mM), and with or without 50 mM NaCl. Tipburn symptoms were observed only in Su, and only in the saline treatment. Tipburn incidence in response to topical treatments with Ca2+ scavengers, Ca2+ transport inhibitors, and antioxidants was assessed. All treatments were applied before symptom expression, and evaluated later, when symptoms were expected to occur. Superoxide presence in tissues was determined with nitro blue tetrazolium (NBT) and oxidative damage as malondialdehyde (MDA) content. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were assayed.Under control and saline conditions, tipburn could be induced in both varieties by topical treatments with a Ca2+ scavenger (EGTA) and Ca2+ transport inhibitors (verapamil, LaCl3) and reduced by supplying Ca2+ along with a ionophore (A 23187). Tipburn symptoms were associated with locally produced ROS. O2 and oxidative damage significantly increased in leaf margins before symptom expression, while topical antioxidant applications (Tiron, DPI) reduced symptoms in treated leaves, but not in the rest of the plant. Antioxidant enzyme activity was higher in Po, and increased more in response to EGTA treatments, and may contribute to mitigating oxidative damage and tipburn expression in this variety.  相似文献   

18.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

19.
By cultivating tipburn-susceptible plants in modified Hoagland’s medium containing of gradient exogenous calcium (Ca2+), we have shown that Ca2+ deficiency is one of the main causes of tipburn in Chinese cabbage (Brassica rapa L. ssp. pekinensis). The effect of endogenous plant Ca2+ concentrations on tipburn was also studied in a doubled haploid (DH) population consisting of 100 individuals, but no correlation was found. We then examined the expression of 12 Ca2+ transporter genes that function in cytosolic Ca2+ homeostasis in both tipburn-susceptible and tipburn-resistant plants under normal and tipburn-inducing conditions. Expression patterns for most of these genes differed between the two types of plants. Salicylic acid (SA) accumulated in response to conditions of calcium deficiency in our study, and both total SA and SA β-glucoside (SAG) in tipburn-susceptible plants was ~3-fold higher than it was in resistant plants following Ca2+ deficiency treatment. Also, the changes observed in SA levels correlated well with cell death patterns revealed by trypan blue staining. Therefore, we speculate that the cytoplasmic Ca2+ fluctuation-induced downstream signaling events, as well as SA signaling or other biological events, are involved in the plant defense response to tipburn in Chinese cabbage.  相似文献   

20.
Tipburn is an irreversible physiological disorder of Chinese cabbage that decreases crop value. Because of a strong environmental component, tipburn‐resistant cultivars are the only solution, although tipburn resistance genes are unknown in Chinese cabbage. We studied three populations of Chinese cabbage over four growing seasons under field conditions: (a) 194 diverse inbred lines, (b) a doubled haploid (DH100) population, and (c) an F2 population. The 194 lines were genotyped using single nucleotide polymorphism markers, and genome‐wide‐association mapping showed that 24 gQTLs were significantly associated with tipburn disease index. Analysis of the DH100 and F2 populations identified a shared tipburn‐associated locus, gqbTRA06, that was found to cover the region defined by one of the 24 gQTLs. Of 35 genes predicted in the 0.14‐Mb quantitative trait locus region, Bra018575 (calreticulin family protein, BrCRT2) showed higher expression levels during disease development. We cloned the two BrCRT2 alleles from tipburn‐resistant (BrCRT2R) and tipburn‐susceptible (BrCRT2S) lines and identified a 51‐bp deletion in BrCRT2S. Overexpression of BrCRT2R increased Ca2+ storage in the Arabidopsis crt2 mutant and also reduced cell death in leaf tips and margins under Ca2+‐depleted conditions. Our results suggest that BrCRT2 is a possible candidate gene for controlling tipburn in Chinese cabbage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号