首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
The activation of CDK2-cyclin E in late G1 phase has been shown to play a critical role in retinoblastoma protein (pRb) inactivation and G1-S phase progression of the cell cycle. The phosphatidylinositol 3-OH-kinase inhibitor LY294002 has been shown to block cyclin D1 accumulation, CDK4 activity and, thus, G1 progression in alpha-thrombin-stimulated IIC9 cells (Chinese hamster embryonic fibroblasts). Our previous results show that expression of cyclin E rescues S phase progression in alpha-thrombin-stimulated IIC9 cells treated with LY294002, arguing that cyclin E renders CDK4 activity dispensable for G1 progression. In this work we investigate the ability of alpha-thrombin-induced CDK2-cyclin E activity to inactivate pRb in the absence of prior CDK4-cyclin D1 activity. We report that in the absence of CDK4-cyclin D1 activity, CDK2-cyclin E phosphorylates pRb in vivo on at least one residue and abolishes pRb binding to E2F response elements. We also find that expression of cyclin E rescues E2F activation and cyclin A expression in cyclin D kinase-inhibited, alpha-thrombin-stimulated cells. Furthermore, the rescue of E2F activity, cyclin A expression, and DNA synthesis by expression of E can be blocked by the expression of either CDK2(D145N) or RbDeltaCDK, a constitutively active mutant of pRb. However, restoring four known cyclin E-CDK2 phosphorylation sites to RbDeltaCDK renders it susceptible to inactivation in late G1, as assayed by E2F activation, cyclin A expression, and S phase progression. These data indicate that CDK2-cyclin E, without prior CDK4-cyclin D activity, can phosphorylate and inactivate pRb, activate E2F, and induce DNA synthesis.  相似文献   

2.
DNA polymerase epsilon (Polepsilon), one of the three major eukaryotic replicative polymerases, is comprised of the essential catalytic subunit, called Pol2 in budding yeast, and three accessory subunits, only one of which, Dpb2, is essential. Polepsilon is recruited to replication origins during late G(1) phase prior to activation of replication. In this work we show that the budding yeast Dpb2 is phosphorylated in a cell cycle-dependent manner during late G(1) phase. Phosphorylation results in the appearance of a lower mobility species. The appearance of that species in vivo is dependent upon the Cdc28 cyclin-dependent protein kinase (CDK), which can directly phosphorylate Dpb2 in vitro. Either G(1) cyclin (Cln) or B-type cyclin (Clb)-associated CDK is sufficient for phosphorylation. Mapping of phosphorylation sites by mass spectrometry using a novel gel-based proteolysis protocol shows that, of the three consensus CDK phosphorylation sites, at least two, Ser-144 and Ser-616, are phosphorylated in vivo. The Cdc28 CDK phosphorylates only Ser-144 in vitro. Using site-directed mutagenesis, we show that Ser-144 is sufficient for the formation of the lower mobility form of Dpb2 in vivo. In contrast, Ser-616 appears not to be phosphorylated by Cdc28. Finally, inactivation of all three CDK consensus sites in Dpb2 results in a synthetic phenotype with the pol2-11 mutation, leading to decreased spore viability, slow growth, and increased thermosensitivity. We suggest that phosphorylation of Dpb2 during late G(1) phase at CDK consensus sites facilitates the interaction with Pol2 or the activity of Polepsilon  相似文献   

3.
Su YF  Yang T  Huang H  Liu LF  Hwang J 《PloS one》2012,7(4):e34250
Increasing evidence has pointed to an important role of SUMOylation in cell cycle regulation, especially for M phase. In the current studies, we have obtained evidence through in vitro studies that the master M phase regulator CDK1/cyclin B kinase phosphorylates the SUMOylation machinery component Ubc9, leading to its enhanced SUMOylation activity. First, we show that CDK1/cyclin B, but not many other cell cycle kinases such as CDK2/cyclin E, ERK1, ERK2, PKA and JNK2/SAPK1, specifically enhances SUMOylation activity. Second, CDK1/cyclin B phosphorylates the SUMOylation machinery component Ubc9, but not SAE1/SAE2 or SUMO1. Third, CDK1/cyclin B-phosphorylated Ubc9 exhibits increased SUMOylation activity and elevated accumulation of the Ubc9-SUMO1 thioester conjugate. Fourth, CDK1/cyclin B enhances SUMOylation activity through phosphorylation of Ubc9 at serine 71. These studies demonstrate for the first time that the cell cycle-specific kinase CDK1/cyclin B phosphorylates a SUMOylation machinery component to increase its overall SUMOylation activity, suggesting that SUMOylation is part of the cell cycle program orchestrated by CDK1 through Ubc9.  相似文献   

4.
BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.  相似文献   

5.
The retinoblastoma (Rb) protein was originally identified as a product of a tumour suppressor gene that plays a pivotal role in regulating both the cell cycle and differentiation in mammals. The growth-suppressive activity of Rb is regulated by phosphorylation with cyclin-dependent kinase (CDK), and inactivation of the Rb function is one of the critical steps for transition from the G1 to the S phase. We report here the cloning of a cDNA (NtRb1) from Nicotiana tabacum which encodes a Rb-related protein, and show that this gene is expressed in all the organs examined at the mRNA level. We have demonstrated that NtRb1 interacts with tobacco cyclin D by using yeast two-hybrid and in vitro binding assays. In mammals, cyclin D can assemble with CDK4 and CDK6, but not with Cdc2, to form active complexes. Surprisingly, tobacco cyclin D and Cdc2 proteins can form a complex in insect cells, which is able to phosphorylate tobacco Rb-related protein in vitro. Using immunoprecipitation with the anti-cyclin D anti-body, cyclin D can be found in a complex with Cdc2 in suspension-cultured tobacco BY-2 cells. These results suggest that the cdc2 gene modulates the cell cycle through the phosphorylation of Rb-related protein by forming an active complex with cyclin D in plants.  相似文献   

6.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

7.
Although the developmental programs of plants and animals differ, key regulatory components of their cell cycle have been conserved. Particular attention has been paid to the role of the complexes between highly conserved cyclin and cyclin-dependent kinases in regulating progression through the cell cycle. The recent demonstration that roscovitine is a potent and selective inhibitor of the animal cyclin-dependent kinases cdc2 (CDK1), CDK2 and CDK5 prompted an investigation into its effects on progression through the plant cell cycle. Roscovitine induced arrests both in late G1 and late G2 phase in BY-2 tobacco cell suspensions. Both blocks were fully reversible when roscovitine was used at concentrations similar to those used in the animal system. Stationary-phase cells subcultured in the presence of roscovitine were arrested at a 2C DNA content. This arrest was more efficient without exogenous addition of plant growth regulator. Roscovitine induced a block in G1 earlier than that induced by aphidicolin. S-phase synchronized cells treated with roscovitine were arrested at a 4C DNA content at the G2/ M transition. The expression analysis of a mitotic cyclin (NTCYC1) indicated that the roscovitine-induced G2 block probably occurs in late G2. Finally, cells in metaphase were insensitive to roscovitine. The purified CDK/cyclin kinase activities of late G1 and early M arrested cells were inhibited in vitro by roscovitine. The implications of these experimental observations for the requirement for CDK activity during progression through the plant cell cycle are discussed.  相似文献   

8.
Cyclin D1 binds and regulates the activity of cyclin-dependent kinases (CDKs) 4 and 6. Phosphorylation of the retinoblastoma protein by cyclin D1.CDK4/6 complexes during the G(1) phase of the cell cycle promotes entry into S phase. Cyclin D1 protein is ubiquitinated and degraded by the 26 S proteasome. Previous studies have demonstrated that cyclin D1 ubiquitination is dependent on its phosphorylation by glycogen synthase kinase 3beta (GSK-3beta) on threonine 286 and that this phosphorylation event is greatly enhanced by binding to CDK4 (Diehl, J. A., Cheng, M. G., Roussel, M. F., and Sherr, C. J. (1998) Genes Dev. 12, 3499-3511). We now report an additional pathway for the ubiquitination of free cyclin D1 (unbound to CDKs). We show that, when unbound to CDK4, a cyclin D1-T286A mutant is ubiquitinated. Further, we show that a mutant of cyclin D1 that cannot bind to CDK4 (cyclin D1-KE) is also ubiquitinated in vivo. Our results demonstrate that free cyclin D1 is ubiquitinated independently of its phosphorylation on threonine 286 by GSK-3beta, suggesting that, as has been shown for cyclin E, distinct pathways of ubiquitination lead to the degradation of free and CDK-bound cyclin D1. The pathway responsible for ubiquitination of free cyclin D1 may be important in limiting the effects of cyclin D1 overexpression in a variety of cancers.  相似文献   

9.
The cyclin dependent kinase inhibitor (CKI) p27Kip1 binds to cyclin E/CDK2 complexes and prevents premature S-phase entry. During late G1 and throughout S phase, p27 phosphorylation at T187 leads to its subsequent degradation, which relieves CDK2 inhibition to promote cell cycle progression. However, critical events that trigger CDK2 complexes to phosphorylate p27 remain unclear. Utilizing recombinant proteins, we demonstrate that human Speedy (Spy1) activates CDK2 to phosphorylate p27 at T187 in vitro. Addition of Spy1 or Spy1/CDK2 to a preformed, inhibited cyclin E/CDK2/p27 complex also promoted this phosphorylation. Furthermore, Spy1 protected cyclin E/CDK2 from p27 inhibition toward histone H1, in vitro. Inducible Spy1 expression in U2OS cells reduced levels of endogenous p27 and exogenous p27WT, but not a p27T187A mutant. Additionally, Spy1 expression in synchronized HeLa cells enhanced T187 phosphorylation and degradation of endogenous p27 in late G1 and throughout S phase. Our studies provide evidence that Spy1 expression enhances CDK2-dependent p27 degradation during late G1 and throughout S phase.  相似文献   

10.
11.
12.
Cyclin-dependent kinase 1 (CDK1) inhibitory phosphorylation controls the onset of mitosis and is essential for the checkpoint pathways that prevent the G(2)- to M-phase transition in cells with unreplicated or damaged DNA. To address whether CDK2 inhibitory phosphorylation plays a similar role in cell cycle regulation and checkpoint responses at the start of the S phase, we constructed a mouse strain in which the two CDK2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, were changed to alanine and phenylalanine, respectively (CDK2AF). This approach showed that inhibitory phosphorylation of CDK2 had a major role in controlling cyclin E-associated kinase activity and thus both determined the timing of DNA replication in a normal cell cycle and regulated centrosome duplication. Further, DNA damage in G(1) CDK2AF cells did not downregulate cyclin E-CDK2 activity when the CDK inhibitor p21 was also knocked down. We were surprised to find that this was insufficient to cause cells to bypass the checkpoint and enter the S phase. This led to the discovery of two previously unrecognized pathways that control the activity of cyclin A at the G(1) DNA damage checkpoint and may thereby prevent S-phase entry even when cyclin E-CDK2 activity is deregulated.  相似文献   

13.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

14.
Cyclin E-associated CDK2 activity is required for the initiation of DNA synthesis in human cells. CDK2 activity is tightly regulated; CDK2 must be in the nucleus, bound to a cyclin, phosphorylated on T160, and dephosphorylated on T14/Y15 for complete kinase activation. Nuclear localization exposes CDK2 to activating enzymes (CAK, Cdc25A) in stimulated cells. Previous studies from our lab indicate CDK2 nuclear localization and cyclin E co-expression are insufficient to cause CDK2 activation or T160 phosphorylation in stimulated IIC9 cells; these activities still require serum stimulation and ERK kinase activity. Recent studies have implicated a role for origin of replication (ORC) licensing proteins in the activation of G1/S Cdks. In this study, we show that CDK2 associates with chromatin and Cdc6 in an ERK-dependent manner following stimulation of IIC9 CHEF cells. We show that nuclear-localized CDK2 (CDK2-NLS) ectopically expressed with cyclin E requires mitogenic stimulation and ERK activation for chromatin association, in addition to previously shown kinase activation and T160 phosphorylation in IIC9 cells. Additionally, we show that expression of Cdc6 in stimulated IIC9 cells treated with ERK inhibitor rescues CDK2-NLS chromatin association, kinase activation, and T160 phosphorylation. From the above data, we deduce ERK-dependent CDK2 activation is due in part to ERK-dependent Cdc6 expression. To examine the role of Cdc6 directly in stimulated primary human fibroblasts, we used RNA interference to attenuate the expression of Cdc6. We show that Cdc6 expression is required for CDK2 chromatin association and kinase activation in stimulated primary human fibroblasts. Additionally, we show that Cdc6 expression is required for the initiation of DNA synthesis and S phase entry in stimulated primary human fibroblasts. Ultimately, this data implicates Cdc6 expression as an important mitogen-induced mechanism in the activation of CDK2/cyclin E, the initiation of DNA synthesis, and the regulation of G1-S phase progression.  相似文献   

15.
Human cyclin A is required for mitosis until mid prophase.   总被引:12,自引:0,他引:12  
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.  相似文献   

16.
Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G1 phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G2 phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G1 arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. The inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G2 arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and ATM/ATR kinase are known to play essential roles in the G2 checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G2 arrest. Additionally our results indicate that the transient G2 arrest is induced by FGF in RCS cell through mechanisms that are independent of the G1 arrest, and that the G2 block is not strictly required for the sustained G1 arrest but may provide a pausing mechanism that allows the FGF response to be fully established.  相似文献   

17.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

18.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclin-dependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.

Key Words:

Plant cyclin B2, Topoisomerase II, ICRF-193, G2 checkpoint, Microtubules  相似文献   

19.
Kim H  Jo C  Jang BG  Oh U  Jo SA 《Cellular signalling》2008,20(1):120-129
Oncostatin M (OSM), an IL-6 family cytokine, either inhibits or enhances the growth of cells depending on cell type. Here, we report that OSM inhibits proliferation of skeletal muscle cells by blocking cell cycle progression from G(1) to S phase. OSM treatment significantly reduced levels of cyclin D1 protein and phosphorylation of retinoblastoma protein (Rb) at Ser-795, a CDK4-specific phosphorylation site. The OSM-induced cyclin D1 reduction correlated with decreased amount of the cyclin D1/p27 Kip1 complex and increased amounts of the CDK2/p27 Kip1 complex, resulting in inhibition of CDK2 activity. Results obtained with lactacystin, a proteasome inhibitor, demonstrated that cyclin D1 reduction occurred through ubiquitin/proteasome proteolysis. In addition, activation of STAT3, but not STAT1, is likely to regulate OSM-induced cyclin D1 reduction. Dominant negative (DN)-STAT3 blocked OSM-induced cyclin D1 reduction, and constitutively active-STAT3 also induced cyclin D1 reduction. These results suggest that OSM arrests skeletal muscle cell growth at the G1/S checkpoint and that this response occurs by an ubiquitin/proteasome-dependent cyclin D1 protein reduction which is regulated by STAT3.  相似文献   

20.
Previous studies in our laboratory have shown that constitutive cyclin E expression can alleviate the requirement for cyclin Δ-CDK activity in the inactivation of the retinoblastoma protein (pRb). RbΔCDK, a mutant construct of pRb with 15 of the 16 CDK phosphorylation sites mutated to alanine represses activation of E2F by mitogen, despite cyclin E over-expression. However, restoration of the four cyclin E-CDK2 phosphorylation sites to RbΔCDK renders this construct sensitive to inactivation by CDK phosphorylation. In the present study, we engage a “reverse mutational analysis” by restoring cyclin E-CDK2 phosphorylation sites to RbΔCDK individually and in combinations in an attempt to discover phosphorylation sites on Rb that are critical for inactivation. Surprisingly, we report that, in both rodent and human cells, restoration of threonine-373 to RbΔCDK, alone or in combination with other phospho-resotrations, results in a loss of the constitutively repressive effect of this construct on E2F activation. Further, induction of endogenous cyclin A protein is blocked by RbΔCDK, but not by mutants of RbΔCDK containing a restored threonine-373. Finally, while S phase entry is blocked by expression of RbΔCDK, restoration of threonine-373 largely attenuates this effect. These findings reveal that phosphorylation of threonine-373 by CDK2-cyclin E represent a potentially crucial event in the inactivation of the pRb protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号