首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Stable planar membranes have been obtained from the bipolar lipid glycerol dialkyl nonitol tetraether (GDNT) extracted from the thermoacidophilic archebacterium Sulfolobus acidocaldarius. The electric capacity Cm, the resistance Rm and tension sigma of these membranes were measured. The dependence of the bipolar lipid membranes mean life time tau 1 on voltage was investigated. It was shown that the irreversible electric breakdown of membranes from GDNT and usual phospholipids is due to the same mechanism, viz., due to formation of a hydrophilic pore with an overcritical radius. Under electric field the GDNT molecules take U-shape, and the polar headgroups of such molecules cover the pore's interior.  相似文献   

2.
1H-NMR, dynamic light scattering and negative staining electron microscopy have been used to study the formation and physico-chemical properties of aqueous dispersions of mixtures of monopolar lipids extracted from Sulfolobus solfataricus. This microorganism is a thermophilic archaeobacterium growing optimally at about 85 degrees C and pH 3. The two hydrolytic fractions of the membrane complex lipids that have been studied are: the symmetric lipid glycerol dialkyl glycerol tetraether (GDGT) and the asymmetric lipid glycerol dialkyl nonitol tetraether (GDNT). Electron micrographs of pure and mixed GDNT and GDGT dispersions show the formation of complex structures. Only above a critical monopolar/bipolar lipid ratio, typical of the bipolar lipid, could closed structures be formed and good agreement was obtained in sizing with NMR, electron microscopy and dynamic light scattering. NMR spectra have been carried out at several temperatures from 25 degrees to 85 degrees C, to obtain information on the temperature-dependent structural, dynamic and permeability properties of the co-dispersed vesicles. The results are discussed in terms of the steric constraints and the chemico-physical interactions occurring among the different parts of the molecules and compared with previous studies performed with different physical techniques.  相似文献   

3.
The thermotropic properties of the bipolar lipids, glycerol dialkylglycerol tetraether (GDGT) and glycerol dialkylnonitol tetraether (GDNT), were determined at different degrees of hydration and in mixtures with dipalmitoylphosphatidylcholine (DPPC). The number of water molecules rendered unfreezable by the GDNT molecule is 10+/-1.5 and that by the GDGT molecule 2.8+/-0.7 or about 1.1-1.5 H2O molecules per OH group. Binding of water molecules causes randomization of the two polar heads from the oriented form prevailing in the dry state. The hydration seems to be a cooperative process extending over a whole lipid domain. DPPC added in small amounts to GDNT interacts preferentially with the nonitol halves of the molecules separating them from the glycerol half molecules. In the cooperative interaction domain each DPPC molecule is surrounded by up to six GDNT molecules. Cooperative domains formed during the interaction of DPPC with GDGT are less pronounced. In both cases they affect the thermotropic properties of the system.  相似文献   

4.
The lipids of Caldariella acidophila, an extreme thermophile member of the new archaebacteria group, are macrocyclic tetraethers. They are made up of two glycerol molecules (or one glycerol and one nonitol) bridged through ether linkages by two C4016,16′-biphytanyl chains. To elucidate the biosynthesis of the glycerol moiety of these tetraethers and the mechanism of glycerol ether assembly, labelled [U-14C, 1(3)-3H]glycerol and [U-14C, 2-3H]glycerol, were fed to C. acidophila. Both precursors were selectively incorporated with high efficiency, and without any change in the 3H/14C ratio, in the glycerol moiety of tetraethers. These results suggest that the ether forming step in the biosynthesis of tetraether lipids of C. acidophila, occurs without any loss of hydrogen from any of the glycerol carbons which in turn could be directly alkylated by geranylgeranyl pyrophosphate. The incorporation of radioactivity in the isoprenoid chains and into nonitol is also analysed.  相似文献   

5.
A modified procedure for extraction and purification of hydrolyzed archaebacterial lipids is described. Lipids were extracted from Sulfolobus acidocaldarius using a Soxhlet extraction procedure followed by trichloroacetic acid solvent-extraction of the residue. The yield of total extractable material by this protocol was 14% which, after a two-phase wash, yielded 10% lipid. Modifications to the published steps for purifying the subsequently hydrolyzed lipids were developed to purify glycerol dialkyl nonitol tetraether (GDNT). The nearly colorless final macrocyclic product was characterized by TLC, IR, NMR, and mass spectrometry.  相似文献   

6.
As a continuation of an X-ray scattering study of the tetraether lipids extracted from the thermophilic archaebacterium Sulfolobus solfataricus, the phase behaviour of four fractions of the complex polar lipid extract (PLE) is described. Each molecule of two of these fractions (P1 and GL) carries an unsubstituted glycerol headgroup, those of another (P2) no such group; the fourth fraction (WPLE) is obtained by water-washing PLE, thus reducing its P2 content from approximately 48% to approximately 24% and increasing the average number of molecules bearing an unsubstituted glycerol headgroup from approximately 0.4 to approximately 0.6. The main result is a striking correlation between the phase behaviour and the average ratio of unsubstituted glycerol headgroups to the total number of headgroups: the fractions P1, GL and WPLE, in which that number is respectively 0.5, 0.5 and 0.3, form rod-containing phases; the fraction P2, in which that number is zero, yields a lamellar phase throughout the phase diagram. An analysis of the dimensions of the structure elements confirms our previous conclusion that, in the presence of a sufficient amount of water, the unsubstituted glycerol headgroups partition preferentially in the hydrocarbon regions rather than at the polar/apolar interfaces. These results, moreover, corroborate our previous conjectures regarding the correlations between the structure of the plasma membrane, the phase behaviour of the lipid extract and life at high temperature.  相似文献   

7.
A second category of membrane lipids in extreme thermoacidophile archaebacteria of the Caldariella group is based on the same type of macrocyclic tetraether, incorporating two 16,16′-biphytanyl chains, as those described earlier, but only one of the hydrophilic components is glycerol; the second hydrophilic component is calditol, a unique branched-chain nonitol. It is also shown that in the biphytanyl chains there can be up to 4 cyclopentane rings whose location is demonstrated.  相似文献   

8.
The thermotropic phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) and its 1,2-dialkyl, 1-acyl 2-alkyl and 1-alkyl 2-acyl analogs was examined by differential scanning calorimetry, and the organization of these molecules in those hydrated bilayers was studied by Fourier transform infrared spectroscopy. The calorimetric data indicate that substitution of either or both of the acyl chains of DPPC with the corresponding ether-linked hydrocarbon chain results in relatively small increases in the temperature (< 4 degrees C) and enthalpy (< 1 kcal/mol) of the lipid chain-melting phase transition. The spectroscopic data reveal that replacement of one or both of the ester-linked hydrocarbon chains of DPPC with its ether-linked analog causes structural changes in the bilayer assembly, which result in an increase in the polarity of the local environments of the phosphate headgroups and of the ester carbonyl groups at the bilayer polar/apolar interface. The latter observation is unexpected, given that ester linkages are considered to be intrinsically more polar that ether linkages. This finding cannot be satisfactorily rationalized unless the conformation of the glycerol backbones of the analogs containing ether-linked hydrocarbon chains differs significantly from that of diacyl glycerolipids such as DPPC. A comparison of the alpha-methylene scissoring bands and the methylene wagging band progressions of these lipids with the corresponding absorption bands of specifically chain-perdeuterated analogs of DPPC also supports the conclusion that replacement of the ester-linked hydrocarbon chains of DPPC with the corresponding ether-linked analog induces conformational changes in the lipid glycerol backbone. The suggestion that the conformation of glycerol backbones in the alkyl-acyl and dialkyl derivatives of DPPC differs from that of the naturally occurring 1,2-diacyl glycerolipid suggests that mono- and di-alkyl glycerolipids may not be good models of their diacyl analogs. These results, and previously published evidence that DPPC analogs with ether-linked hydrocarbon chains spontaneously form chain-interdigitated gel phases at low temperatures, clearly indicate that the properties of lipid bilayers can be substantially altered by small changes in the chemical structures of their polar/polar interfaces, and highlight the critical role of the interfacial region as a determinant of the structure and organization of lipid assemblies.  相似文献   

9.
The 16S ribosomal DNA based distinction between the bacterial and archaeal domains of life is strongly supported by the membrane lipid composition of the two domains; Bacteria generally contain dialkyl glycerol diester lipids, whereas Archaea produce isoprenoid dialkyl glycerol diether and membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) lipids. Here we show that a new group of ecologically abundant membrane-spanning GDGT lipids, containing branched instead of isoprenoid carbon skeletons, are of a bacterial origin. This was revealed by examining the stereochemistry of the glycerol moieties of those branched tetraether membrane lipids, which was found to be the bacterial 1,2-di-O-alkyl-sn-glycerol stereoconfiguration and not the 2,3-di-O-alkyl-sn-glycerol stereoconfiguration as in archaeal membrane lipids. In addition, unequivocal evidence for the presence of cyclopentyl moieties in these bacterial membrane lipids was obtained by NMR. The biochemical traits of biosynthesis of tetraether membrane lipids and the formation of cyclopentyl moieties through internal cyclization, which were thought to be specific for the archaeal lineage of descent, thus also occur in the bacterial domain of life.  相似文献   

10.
The lipids of the Caldariella group of extremely thermophilic acidophilic bacteria are based on a 72-membered macrocyclic tetraether made up from two C40 diol units and either two glycerol units or one glycerol and one nonitol. The C40 components have the 16,16′-biphytanyl skeleton and the detailed structure of three of them is established.  相似文献   

11.
In many lipid-containing systems (intact membranes, lipid-water and proteinlipid-water phases) the hydrocarbon chains are known to undergo a reversible temperature-dependent transition between a highly disordered (type α) and a partly ordered (type β) conformation; in the β conformation the chains, stiff and all parallel, are packed with rotational disorder according to a two-dimensional hexagonal lattice. This work describes an X-ray diffraction and freeze-fracturing electron microscope study of the phases involved in this conformational transition. Several lipid-water systems were studied: mitochondrial lipids; phosphatidic acid, synthetic lecithin; hen egg lecithin. The conformational transition is found to be a complex phenomenon dependent upon the chemical composition of the lipids, the amount of water and temperature. When the lipid is a pure chemical species the transition involves two phases; one with all the chains in the α conformation the other with all the chains in the β conformation. If the chains are heterogeneous, then from the onset of the transition from type α, they segregate into regions with different conformation, presumably according to their length and degree of saturation. One of the phases (Lαβ) consists of regularly stacked lipid lamellae, each of which is a disordered mosaic of two types of domains; one with the chains in the α, the other in the β conformation. In another phase (Lγ) each lipid lamella is formed by one monolayer of type α and one of type β, joined by their apolar faces. Two other phases (Pγ and Pαβ) display two-dimensional lattices, and consist of lipid lamellae distorted by wave-like ripples, with an ordered segregation of domains in the α and in the β conformation. The number and the structure of the phases involved in the conformational transition are strongly dependent upon the heterogeneity of the hydrocarbon chains and upon the charge and hydration of the polar groups. The results of this study have a bearing on the conformation of the chains in membranes, and on the possible biological significance of conformational transitions.  相似文献   

12.
The archaea are distinguished by their unique isoprenoid ether lipids, which typically consist of the sn-2,3-diphytanylglycerol diether or sn-2,3-dibiphytanyldiglycerol tetraether core modified with a variety of polar headgroups. However, many hyperthermophilic archaea also synthesize tetraether lipids with up to four pentacyclic rings per 40-carbon chain, presumably to improve membrane thermal stability at temperatures up to∼110 °C. This study aimed to correlate the ratio of tetraether to diether core lipid, as well as the presence of pentacyclic groups in tetraether lipids, with growth temperature for the hyperthermophilic archaeon, Archaeoglobus fulgidus. Analysis of the membrane core lipids of A. fulgidus using APCI–MS analysis revealed that the tetraether-to-diether lipid ratio increases from 0.3 ± 0.1 for cultures grown at 70°C to 0.9 ± 0.1 for cultures grown at 89°C. Thin-layer chromatography (TLC) followed by APCI–MS analysis provided evidence for no more than one pentacycle in the hydrocarbon chains of tetraether lipid from cultures grown at 70°C and up to 2 pentacycles in the tetraether lipid from cultures grown at higher temperatures. Analysis of the polar lipid extract using TLC and negative-ion ESI–MS suggested the presence of diether and tetraether phospholipids with inositol, glycosyl, and ethanolamine headgroup chemistry.  相似文献   

13.
The surface behavior of six different ether lipids from archaebacteria, based on condensation of glycerol or more complex polyols with two isoprenoid alcohols at 20 or 40 carbon atoms, was investigated in monolayers at the air-water interface.The compounds with no complex polar group (GD, GDGT, GDNT) form monolayers showing a reversible collapse at surface pressure as low as 22 dynes/cm. This collapse pressure decrease with temperature in such a way that the film tension remains constant. In condensed films, these molecules do not assume a completely upright position.Lipids with complex polar ends (HL, GLB, PLII) form films more stable to compression. Forcearea characteristics and surface moment values of HL monolayers are similar to those of analogous ester lipids with fatty acid chains. Monolayers of the two bipolar lipids, GLB and PLII, at room temperature present a more condensed state, probably due to the lateral cohesion between long alkyl chains, but a lower collapse pressure.For all bipolar lipids, the area expansion induced by temperature increase is larger than that of monopolar ones.Abbreviations GD Glycerol diether (2,3-di-O-phytanyl-sn-glycerol - GDGT Glycerol-dialkyl-glycerol tetraether - GDNT Glycerol-dialkyl-nonitol tetraether - GLB Glycolipid B - PLII Phospholipid II - HL Total lipid extract from Halobacterium halobium  相似文献   

14.
Polar lipid biosynthesis in the thermoacidophilic archaeon Thermoplasma acidophilum was analyzed using terbinafine, an inhibitor of tetraether lipid biosynthesis. Cells of T. acidophilum were labeled with [(14)C]mevalonic acid, and their lipids were extracted and analyzed by two-dimensional thin-layer chromatography. Lipids labeled with [(14)C]mevalonic acid, [(14)C]glycerol, and [(32)P]orthophosphoric acid were extracted and hydrolyzed under different conditions to determine the structure of polar lipids. The polar lipids were estimated to be archaetidylglycerol, glycerophosphatidylcaldarchaetidylglycerol, caldarchaetidylglycerol, and beta- l-gulopyranosylcaldarchaetidylglycerol, the main polar lipid of T. acidophilum. Pulse and chase experiments with terbinafine revealed that one tetraether lipid molecule is synthesized by head-to-head condensation of two molecules of archaetidylglycerol and that a sugar group of tetraether phosphoglycolipid is expected to attach to the tetraether lipid core after head-to-head condensation in T. acidophilum. A precursor accumulated in the presence of terbinafine with a fast-atom-bombardment mass spectrometry peak m/z 806 was compatible with archaetidylglycerol. The relative height of the peak m/z 806 decreased after removal of the inhibitor. The results suggest that most of the precursor, archaetidylglycerol, is in fully saturated form.  相似文献   

15.
The structures of three of the major polar lipids (PNL1a, GL1a, and PNGL1) of Methanobacterium thermoautotrophicum were elucidated. These lipids are derivatives of dibiphytanyl diglycerol tetraether (C40 tetraether; the proposed name is caldarchaeol). PNL1a is a C40 tetraether analog of phosphatidylethanolamine (proposed name: caldarchaetidylethanolamine). GL1a was identified as beta-D-glucopyranosyl-(1-6)-beta-D-glucopyranosyl C40 tetraether (diglucosyl caldarchaeol). PNGL1 has the polar head groups of both PNL1a and GL1a; one of the free hydroxyls of this tetraether is esterified with phosphoethanolamine while the other is linked to a glucosylglucose residue with the same structure as that of GL1a (proposed name: diglucosyl caldarchaetidylethanolamine). That is, PNL1a (aminophospholipid), GL1a (glycolipid), and PNGL1 (aminophosphoglycolipid) form structurally a quartet of lipids with the bare caldarchaeol. We propose a new systematic nomenclature of archaebacterial polar lipids in the "DISCUSSION," because the alternative names are too lengthy and laboratory designations of these lipids are not at all systematic. This nomenclature starts with giving the names archaeol and caldarchaeol to dialkyl diether of glycerol or other polyol and tetraether of glycerol or other polyol and alkyl alcohols, respectively, because these lipids are specific to archaebacteria. Phospholipids with a phosphodiester bond were named as derivatives of archaetidic acid or caldarchaetidic acid (phosphomonoesters of archaeol and caldarchaeol) by analogy with phosphatidic acid.  相似文献   

16.
Liquid chromatography-tandem mass spectrometry of membrane lipid cores from Sulfolobus species reveals isomeric forms of ring-containing isoprenoid glycerol dialkyl glycerol tetraether components not previously recognised via the use of NMR and liquid chromatography-mass spectrometry techniques. Equivalent isomerism was confirmed for the components in other hyperthermophilic genera and in sediments which contain the lipids of mesophilic archaea. The recognition of the isomeric structures in distinct archaeal clades suggests that profiles of tetraether lipids reported previously may have oversimplified the true lipid complexity in archaeal cultures and natural environments. Accordingly, the extent of variation in tetraether structures revealed by the work should direct more informative interpretations of lipid profiles in the future. Moreover, the results emphasise that tandem mass spectrometry provides a unique capability for assigning the structures of intact tetraether lipid cores for co-eluting species during chromatographic separation.  相似文献   

17.
Monolayer studies at the air/water interface were carried out on the major tetraether (caldarchaeol-) derived phosphoglycolipid, Glcp-alpha(1-2)-Galf-beta(1-1)-caldarchaeol-phosphoglycerol (PGC-I), the major diether (archaeol-) derived glycolipid, Glcp-alpha(1-2)-Galf-beta(1-1)-archaeol (DGA-I), the major archaeol-derived phospholipids, phosphatidyl-N,N dimethylaminopentanetetrol (PPDAA) and phosphatidyl-N,N,N-trimethylaminopentanetetrol (PPTAA) and the minor caldarchaeol-derived glycolipid, Glcp-alpha(1-2)-Galf-beta(1-1)-caldarchaeol (DGC-I) isolated from the methanogenic archaebacterium, Methanospirillum hungatei. The compression isotherms obtained showed that the two tetraether lipids had molecular surface areas about twice those of the diether lipids at all surface pressures, suggesting that both polar headgroups of the tetraether lipids are anchored into the aqueous subphase, even at the collapse pressure pi c. A U-shaped hydrocarbon chain conformation thus appears to be preferred for the tetraether lipids at the air/water interface, rather than an extended chain arrangement. The compression isotherms of the two tetraether lipids PGC-I and DGC-I were very similar at pH 0, both molecules being uncharged, but at pH 5.6 or 8, PGC-I films were much more expanded than the neutral DGC-I, due to ionization of the phosphate group in PGC-I and the resulting charge-charge repulsion. Monolayers of the zwitterionic diether phospholipids PPDAA and PPTAA were much less compressible than the glycosylated lipids, PGC-I, DGC-I and DGA-I, because the latter lipids contain the more compressible diglycosyl headgroup, oriented in horizontal conformation at low surface pressures, compared to the lower compressibility of the zwitterionic headgroup in the vertical conformation, particularly at pH 0 and 5.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The conformation and molecular packing of sodium 1,2-dimyristoyl-sn-glycero-phospho-rac-glycerol (DMPG) have been determined by single crystal analysis (R = 0.098). The lipid crystallizes in the monoclinic spacegroup P2(1) with the unit cell dimensions a = 10.4, b = 8.5, c = 45.5 A and beta = 95.2 degrees. There are two independent molecules (A and B) in the asymmetric unit which with respect to configuration and conformation of their glycerol headgroup are mirror images. The molecules pack tail to tail in a bilayer structure. The phosphoglycerol headgroups have a layer-parallel orientation giving the molecules an L-shape. At the bilayer surface the (-) phosphoglycerol groups are arranged in rows which are separated by rows of (+) sodium ions. Laterally the polar groups interact by an extensive network of hydrogen, ionic and coordination bonds. The packing cross-section per molecule is 44.0 A2. The hydrocarbon chains are tilted (29 degrees) and have opposite inclination in the two bilayer halves. In the chain matrix the chain planes are arranged according to a so far unknown hybride packing mode which combines the features of T parallel and O perpendicular subcells. The two fatty acid substituted glycerol oxygens have mutually a - synclinal rather than the more common + synclinal conformation. The conformation of the diacylglycerol part of molecule A and B is distinguished by an axial displacement of the two hydrocarbon chains by four methylene units. This results in a reorientation of the glycerol back bone and a change in the conformation and stacking of the hydrocarbon chains. In molecule A the beta-chain is straight and the gamma-chain is bent while in molecule B the chain conformation is reversed.  相似文献   

19.
The lipid composition of Candidatus “Aciduliprofundum boonei”, the only cultivated representative of archaea falling in the DHVE2 phylogenetic cluster, a group of microorganisms ubiquitously occurring at hydrothermal vents, was studied. The predominant core membrane lipids in this thermophilic euryarchaeote were found to be composed of glycerol dibiphytanyl glycerol tetraethers (GDGTs) containing 0–4 cyclopentyl moieties. In addition, GDGTs with an additional covalent bond between the isoprenoid hydrocarbon chains, so-called H-shaped GDGTs, were present. The latter core lipids have been rarely reported previously. Intact polar lipid analysis revealed that they predominantly consist of GDGTs with a phospho-glycerol headgroup.  相似文献   

20.
Abstract The ratios of tetraether to diether type lipids in the total lipid during cell growth in batch cultures of Methanobacterium thermoautotrophicum ΔH (DSM 1053) were examined. The proportion of tetraether type lipids to the total lipid was about 80% during the log phase, and at the onset of the transient phase it began to rise up to about 93%. It was kept almost constant at that level throughout the stationary phase. The polar lipid composition changed with the age of the cell culture. The proportions of all the diether type polar lipids were lower and the levels of all tetraether type polar lipids were higher in the stationary phase than in the log phase. On the other hand, the composition of polar head groups, irrespective of the core lipids, was nearly constant in both growth phases measured so far despite the change in core lipid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号