首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis is tested that birds in hotter and drier environments may have larger bills to increase the surface area for heat dissipation. California provides a climatic gradient to test the influence of climate on bill size. Much of California experiences dry warm/hot summers and coastal areas experience cooler summers than interior localities. Based on measurements from 1488 museum skins, song sparrows showed increasing body‐size‐corrected bill surface area from the coast to the interior and declining in the far eastern desert. As predicted by Newton's convective heat transfer equation, relative bill size increased monotonically with temperature, and then decreased where average high temperatures exceed body temperature. Of the variables considered, distance from coast, average high summer temperature, and potential evapotranspiration showed a strong quadratic association with bill size and rainfall had a weaker negative relationship. Song sparrows on larger, warmer islands also had larger bills. A subsample of radiographed specimens showed that skeletal bill size is also correlated with temperature, demonstrating that bill size differences are not a result of variation in growth and wear of keratin. Combined with recent thermographic studies of heat loss in song sparrow bills, these results support the hypothesis that bill size in California song sparrows is selected for heat dissipation.  相似文献   

2.
A body of research by Russell Greenberg, Glenn Tattersall and their colleagues has proposed a corollary of Allen's Rule: that in freshwater‐limited environments, bill surface area increases with temperature. Increases in both population density and sexual dimorphism, however, could also explain increases in bill surface area. After controlling for the effects of a hybrid zone, we tested whether temperature or population density in the saltmarsh sparrow Ammospiza caudacuta, a sexually monomorphic estuarine specialist, explained greater variance in bill surface area. This allowed us to examine multiple potential selective mechanisms underlying the Greenberg–Tattersall corollary. We found that saltmarsh sparrows follow the general pattern of the corollary (larger bills in warmer summer climates) but only after controlling for population density. The relationship between bill surface area and temperature varied inversely with population density. We discuss the relative abilities of sexual selection and ecological competition to explain these results.  相似文献   

3.
The warmer and drier climates projected for the mid‐ to late‐21st century may have particularly adverse impacts on the cool temperate rainforests of southeastern Australia. Southern beech (Nothofagus cunninghamii; Nothofagaceae), a dominant tree species in these forests, may be vulnerable to minor changes in its climate envelope, especially at the edge of the species range, with Holocene fossil evidence showing local extinction of populations in response to small climate changes. We modelled the stability of this species climate envelope using the maximum entropy algorithm implemented in Maxent and two thresholds of presence/absence by projecting the modern climate envelope onto four Global Circulation Models forecasted for two time periods (2050s and 2070s). The climate envelope, as estimated from the species present climatic range, is predicted to shrink by up to 49% by the 2050s and up to 64% by the 2070s. The greatest predicted reduction is in Victoria with 91–100% of its current range being climatically unsuitable by the 2070s. Climatically similar areas to the species present range are predicted to remain in mountainous areas of western Tasmania, the Northeast Highlands of Tasmania, and the Baw Baw Plateau in the Central Highlands of Victoria. However, region‐specific modelling approaches made very different predictions from the whole‐range based models, especially in the severity of the predicted decline for Victorian populations of N. cunninghamii which occur in much warmer climates than the rest of the species geographical range. This shows that, for widespread species that span a range of climate zones, the exposure of current populations to climate change may be better modelled using a regional based approach. How the species responds to climate change will depend on the species ability to respond to drier and warmer climates and the concomitant increase in fire intensity.  相似文献   

4.
Identifying environmentally driven changes in traits that serve an ecological function is essential for predicting evolutionary outcomes of climate change. We examined population genetic structure, sex‐specific dispersal patterns, and morphology in relation to rainfall patterns across an island and three peninsulas in South Australia. The study system was the New Holland Honeyeater (Phylidonyris novaehollandiae), a nectarivorous passerine that is a key pollinator species. We predicted that rainfall‐related mechanisms would be driving local adaptation of morphological traits, such that in areas of lower rainfall, where nectar is less available, more insectivorous traits – shorter, deeper bills, longer tarsi, and longer wings – would be favored. The study populations differed in phenotype across the Eyre, Yorke, and Fleurieu Peninsulas and Kangaroo Island despite high gene flow (single continuous population) and sex‐biased dispersal (males were philopatric and females dispersed). We tested the role of rainfall in shaping the observed phenotypic differences, and found strong support for our predicted relationships: birds in areas of higher rainfall had higher condition indices, as well as longer bill‐head length, deeper bills, and shorter tarsi. Bill depth in males in high‐rainfall sites showed signals of stabilizing selection, suggesting local adaptation. In addition to these local indications of selection, a global pattern of directional selection toward larger size for bill‐head length, bill‐nostril length, and wing length was also observed. We suggest this pattern may reflect an adaptive response to the relatively dry conditions that South Australia has experienced over the last decade. We conclude that rainfall has shaped aspects of phenology in P. novaehollandiae, both locally, with different patterns of stabilizing and directional selection, and globally, with evidence of adaptive divergence at a landscape scale.  相似文献   

5.
In the temperate forests of the southern Andes, Nothofagus pumilio, the dominant species of the most extensive forest type, experiences severe defoliation caused by caterpillars of the Ormiscodes genus (Lepidoptera: Saturniidae). This study uses tree rings to reconstruct the history of Ormiscodes outbreaks for the 1850–2005 period and examines relationships between outbreaks and climate variability. We used local climate records to compare outbreak–climate relationships in the northern Patagonian Andes (c. 41°S) and the cooler southern Patagonian Andes (c. 49°S). We also examined relationships between outbreak events and regional climate variability driven by variability in the Southern Annular Mode (SAM) and the El Niño‐Southern Oscillation. Although relationships between Ormiscodes outbreaks and climate proved to be complex, in northern Patagonia defoliation events are associated with drier and warmer than average growing seasons. Warming and drying trends in Patagonia during the latter part of the 20th century have been linked to a positive trend in SAM. During the post‐1976 period of accelerated warming in Patagonia, widespread defoliation outbreaks have occurred in both northern and southern Patagonia but the increase in frequency of events has been greater in the south. In southern Patagonia the increases in frequency of outbreaks in the late 20th century appear to be unprecedented over the c. 150 year tree‐ring record of reconstructed outbreaks. These results are consistent with the greater magnitude of recent warming in southern Patagonia, and suggest that under predicted warmer and drier climates in the 21st century, defoliator outbreaks may continue to increase in frequency. This study is the first systematic reconstruction of past insect outbreaks in South America and provides a preliminary understanding of how climate variability affects defoliator outbreaks in Patagonian Nothofagus forests.  相似文献   

6.
For speciose, but poorly known groups, such as terrestrial arthropods, functional traits present a potential avenue to assist in predicting responses to environmental change. Species turnover is common along environmental gradients, but it is unclear how this is reflected in species traits. Community‐level change in arthropod traits, other than body size, has rarely been explored across spatial scales comparable to those examined here. We hypothesized that the composition and morphological traits of spider assemblages would differ across a gradient of climate and habitat structure. We examined foliage‐living spider assemblages associated with Themeda triandra grasslands along a 900 km climatic gradient in south‐eastern Australia. We used sweep‐netting to collect T. triandra‐associated spiders and counted juveniles and identified adults. We also measured morphological traits of adult spiders and noted their hunting mode. Associations with measures of habitat structure were less consistent than relationships with climate. Both juvenile and adult spiders were more abundant in warmer sites, although species richness was not affected by temperature. We found distinct turnover in species composition along the climatic gradient, with hunting spiders, particularly crab spiders (Thomisidae), making up a greater proportion of assemblages in warmer climates. A range of traits of spiders correlated with the climatic gradient. For example, larger spider species and species that were active hunters were more common in warmer climates. Changes in morphological traits across species, rather than within species drove the morphology‐climate relationship. Strong climate‐trait correlations suggest that it may be possible to predict changes in functional traits of assemblages in response to anthropogenic disturbances such as climate change.  相似文献   

7.
Physiological factors are rarely proposed to account for variation in the morphology of feeding structures. Recently, bird bills have been demonstrated to be important convective and radiant heat sinks. Larger bills have greater surface area than smaller bills and could serve as more effective thermoregulatory organs under hot conditions. The heat radiating function of bills should be more important in open habitats with little shade and stronger convective winds. Furthermore, as a means of dumping heat without increasing water loss through evaporation, bills might play a particularly important thermoregulatory role in heat loss in windy habitat where fresh water is limited. North American salt marshes provide a latitudinal gradient of relatively homogeneous habitat that is windy, open, and fresh‐water limited. To examine the potential role of thermoregulation in determining bill size variation among ten species or subspecies of tidal marsh sparrows, we plotted bill size against maximum summer and minimum winter temperatures. Bill surface areas increases with summer temperature, which explained 82–89% of the variance (depending upon sex) when we controlled for genus membership. Latitude alone predicted bill surface area much more poorly than summer temperature, and winter temperatures explained < 10% of the variance in winter bill size. Tidal marsh sparrow bill morphology may, to a large degree, reflect the role of the bill in expelling excess body heat in these unbuffered, fresh‐water‐limited environments. This new example of Allen's rule reaffirms the importance of physiological constraints on the evolution of vertebrate morphologies, even in bird bills, which have conventionally been considered as products of adaptation to foraging niche.  相似文献   

8.
9.
Avian bills are iconic structures for the study of ecology and evolution, with hypotheses about the morphological structure of bills dating back to Darwin. Several ecological and physiological hypotheses have been developed to explain the evolution of the morphology of bill shape. Here, we test some of these hypotheses such as the role of habitat, ambient temperature, body size, intraspecific competition, and ecological release on the evolution of bill morphology. Bill morphology and tarsus length were measured from museum specimens of yellow warblers, and grouped by habitat type, sex, and subspecies. We calculated the mean maximum daily temperature for the month of July, the hottest month for breeding specimens at each collecting location. Analysis of covariance models predicted total bill surface area as a function of sex, habitat type, body size, and temperature, and model selection techniques were used to select the best model. Habitat, mangrove forests compared with inland habitats, and climate had the largest effects on bill size. Coastal wetland habitats and island populations of yellow warblers had similar bill morphology, both of which are larger than mainland inland populations. Temperate but not tropical subspecies exhibited sexual dimorphism in bill morphology. Overall, this study provides evidence that multiple environmental factors, such as temperature and habitat, contribute to the evolution of bill morphology.  相似文献   

10.
Climate change is predicted to result in warmer and drier Neotropical forests relative to current conditions. Negative density‐dependent feedbacks, mediated by natural enemies, are key to maintaining the high diversity of tree species found in the tropics, yet we have little understanding of how projected changes in climate are likely to affect these critical controls. Over 3 years, we evaluated the effects of a natural drought and in situ experimental warming on density‐dependent feedbacks on seedling demography in a wet tropical forest in Puerto Rico. In the +4°C warming treatment, we found that seedling survival increased with increasing density of the same species (conspecific). These positive density‐dependent feedbacks were not associated with a decrease in aboveground natural enemy pressure. If positive density‐dependent feedbacks are not transient, the diversity of tropical wet forests, which may rely on negative density dependence to drive diversity, could decline in a future warmer, drier world.  相似文献   

11.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

12.
Shifts in biodiversity and ecological processes in stream ecosystems in response to rapid climate change will depend on how numerically and functionally dominant aquatic insect species respond to changes in stream temperature and hydrology. Across 253 minimally perturbed streams in eight ecoregions in the western USA, we modeled the distribution of 88 individual insect taxa in relation to existing combinations of maximum summer temperature, mean annual streamflow, and their interaction. We used a heat map approach along with downscaled general circulation model (GCM) projections of warming and streamflow change to estimate site‐specific extirpation likelihood for each taxon, allowing estimation of whole‐community change in streams across these ecoregions. Conservative climate change projections indicate a 30–40% loss of taxa in warmer, drier ecoregions and 10–20% loss in cooler, wetter ecoregions where taxa are relatively buffered from projected warming and hydrologic change. Differential vulnerability of taxa with key functional foraging roles in processing basal resources suggests that climate change has the potential to modify stream trophic structure and function (e.g., alter rates of detrital decomposition and algal consumption), particularly in warmer and drier ecoregions. We show that streamflow change is equally as important as warming in projected risk to stream community composition and that the relative threat posed by these two fundamental drivers varies across ecoregions according to projected gradients of temperature and hydrologic change. Results also suggest that direct human modification of streams through actions such as water abstraction is likely to further exacerbate loss of taxa and ecosystem alteration, especially in drying climates. Management actions to mitigate climate change impacts on stream ecosystems or to proactively adapt to them will require regional calibration, due to geographic variation in insect sensitivity and in exposure to projected thermal warming and hydrologic change.  相似文献   

13.
We investigated the effect of climate change on Poa secunda Presl. and soils in a shrub‐steppe ecosystem in south‐eastern Washington. Intact soil cores containing P. secunda were reciprocally transplanted between two elevations. Plants and soils were examined, respectively, 4.5 and 5 years later. The lower elevation (310 m) site is warmer (28.5 °C air average monthly maximum) and drier (224 mm yr?1) than the upper elevation (844 m) site (23.5 °C air average monthly maximum, 272 mm yr?1). Observations were also made on undisturbed plants at both sites. There was no effect of climate change on plant density, shoot biomass, or carbon isotope discrimination in either transplanted plant population. The cooler, wetter environment significantly reduced percent cover and leaf length, while the warmer, drier environment had no effect. Warming and drying reduced percent shoot nitrogen, while the cooler, wetter environment had no effect. Culm density was zero for the lower elevation plants transplanted to the upper site and was 10.3 culms m?2 at the lower site. There was no effect of warming and drying on the culm density of the upper elevation plants. Culm density of in situ lower elevation plants was greater than that of the in situ upper elevation plants. Warming and drying reduced total soil carbon 32% and total soil nitrogen 40%. The cooler, wetter environment had no effect on total soil C or N. Of the C and N that was lost over time, 64% of both came from the particulate organic matter fraction (POM, > 53 µ m). There was no effect of warming and drying on the upper population of P. secunda while exposing the lower population to the cooler, wetter environment reduced reproductive effort and percent cover. With the warmer and drier conditions that may develop with climate change, total C and N of semiarid soils may decrease with the active fraction of soil C also rapidly decreasing, which may alter ecosystem diversity and function.  相似文献   

14.
Growth response of subalpine fir (Abies lasiocarpa) to climate was studied across its local geographical and elevation range in the Olympic Mountains, Washington. A dendroecological analysis of subalpine fir across a range of elevations (1350-1850 m) and annual precipitation (125-350 cm y?1), was used to compare environmental factors affecting growth. Climate-growth relationships were explored using Pearson product-moment correlation coefficients; partial correlation analysis was used to assess relationships among site chronologies and climatic variables. Radial growth is negatively correlated with winter precipitation at high elevation and wet sites, but not at low and middle elevation dry sites. Growth is positively correlated with current growing season temperature at all sites; however, growth is negatively correlated with previous year August temperature, indicating that climate affects growth in subsequent years. Positive correlations between growth and summer precipitation during the growing season at low and middle elevation dry sites suggest that soil moisture is partially limiting to growth on these sites. If the climate of the Pacific Northwest becomes warmer and drier, then subalpine fir growth may increase at high elevation and wet sites, but may decrease at lower elevation dry sites in the Olympic Mountains. However, the growth response of subalpine fir to potentially rapid climate change will not be uniform because subalpine fir grows over a wide range of topographic features, habitats, and local climates at different geographical scales. A comparison of growth response to current growing season temperature suggests that the temperature-related growth response of subalpine fir is not adequately described by the parabolic curve used in JABOWA-based models.  相似文献   

15.
Bill size is often viewed as a species‐specific adaptation for feeding, but it sometimes varies between sexes, suggesting that sexual selection or intersexual competition may also be important. Hypotheses to explain sexual dimorphism in avian bill size include divergence in feeding niche or thermoregulatory demands, intrasexual selection based on increased competition among males, or female preference. Birds also show seasonal changes in bill size due to shifts in the balance between growth rate and wear, which may be due to diet or endogenous rhythms in growth. Insight into the function of dimorphism can be gained using the novel approach of digital x‐ray imaging of museum skins to examine the degree to which the skeletal core or the rhamphotheca contribute to overall dimorphism. The rhamphotheca is ever‐growing and ever‐wearing, varying in size throughout life; whereas the skeletal core shows determinant growth. Because tidal marsh sparrows are more dimorphic in bill size than related taxa, we selected two marsh taxa to investigate dimorphism and seasonality in the size of the overall bill, the skeletal core, and the rhamphotheca. Bill size varied by sex and season, with males having larger bills than females, and bill size increasing from nonbreeding to breeding season more in males. Skeletal bill size varied with season, but not sex. The rhamphotheca varied primarily with sex; males had a larger rhamphotheca (corrected for skeletal bill size), which showed a greater seasonal increase than females. The rhamphotheca, rather than the skeletal bill, was responsible for sexual dimorphism in overall bill size, which was particularly well developed in the breeding season. The size of the rhamphotheca may be a condition‐based character that is shaped by sexual selection. These results are consistent with the evidence that bill size is influenced by sexual selection as well as trophic ecology.  相似文献   

16.
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer‐dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool‐temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed‐source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool‐temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3‐fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed‐source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed‐source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed‐source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate.  相似文献   

17.
Aim One of the longest recognized patterns in macroecology, Bergmann’s rule, describes the tendency for homeothermic animals to have larger body sizes in cooler climates than their phylogenetic relatives in warmer climates. Here we provide an integrative process‐based explanation for Bergmann’s rule at the global scale for the mammal order Carnivora. Location Global. Methods Our database comprises the body sizes of 209 species of extant terrestrial Carnivora, which were analysed using phylogenetic autocorrelation and phylogenetic eigenvector regression. The interspecific variation in body size was partitioned into phylogenetic (P) and specific (S) components, and mean P‐ and S‐components across species were correlated with environmental variables and human occupation both globally and for regions glaciated or not during the last Ice Age. Results Three‐quarters of the variation in body size can be explained by phylogenetic relationships among species, and the geographical pattern of mean values of the P‐component is the opposite of the pattern predicted by Bergmann’s rule. Partial regression revealed that at least 43% of global variation in the mean phylogenetic component is explained by current environmental factors. In contrast, the mean S‐component of body size shows large positive deviations from ancestors across the Holarctic, and negative deviations in southern South America, the Sahara Desert, and tropical Asia. There is a moderately strong relationship between the human footprint and body size in glaciated regions, explaining 19% of the variance of the mean P‐component. The relationship with the human footprint and the P‐component is much weaker in the rest of the world, and there is no relationship between human footprint and S‐component in any region. Main conclusions Bergmannian clines are stronger at higher latitudes in the Northern Hemisphere because of the continuous alternation of glacial–interglacial cycles throughout the late Pliocene and Pleistocene, which generated increased species turnover, differential colonization and more intense adaptive processes soon after glaciated areas became exposed. Our analyses provide a unified explanation for an adaptive Bergmann’s rule within species and for an interspecific trend towards larger body sizes in assemblages resulting from historical changes in climate and contemporary human impacts.  相似文献   

18.
Range shift, a widespread response to climate change, will depend on species abilities to withstand warmer climates. However, these abilities may vary within species and such intraspecific variation can strongly impact species responses to climate change. Facing warmer climates, individuals should disperse according to their thermal optimum with consequences for species range shifts. Here, we studied individual dispersal of a reptile in response to climate warming and preferred temperature using a semi‐natural warming experiment. Individuals with low preferred temperatures dispersed more from warmer semi‐natural habitats, whereas individuals with higher preferred temperatures dispersed more from cooler habitats. These dispersal decisions partly matched phenotype‐dependent survival rates in the different thermal habitats, suggesting adaptive dispersal decisions. This process should result into a spatial segregation of thermal phenotypes along species moving ranges which should facilitate local adaptation to warming climates. We therefore call for range shift models including intraspecific variation in thermal phenotype and dispersal decision.  相似文献   

19.
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.  相似文献   

20.
Geographic range size predicts species’ responses to land-use change and intensification, but the reason why is not well established because many correlates of larger geographic ranges, such as realized niche breadth, may mediate species’ responses to environmental change. Agricultural land uses (hereafter ‘agroecosystems’) have warm, dry and more variable microclimates than do cooler and wetter mature forests, so are predicted to filter for species that have warmer, drier and broader fundamental and realized niches. To test these predictions, we estimated species’ realized niches, for temperature and precipitation, and geographic range sizes of 764 insect species by matching GBIF occurrence records to global climate layers, and modelled how species presence/absence in mature forest and nearby agroecosystems depend on species’ realized niches or geographic ranges. The predicted species niche effects consistently matched the expected direction of microclimatic transition from mature forest to agroecosystems. We found a clear signal that species with preference for warmer and drier climates were more likely to be present in agroecosystems. In addition, the probability that species occurred in different land-use types was predicted better by species’ realized niche than their geographic range size. However, niche effects are often context-dependent and varied amongst studies, taxonomic groups and regions used in this analysis: predicting which particular aspects of species’ realized niche cause sensitivity to land-use change, and the underpinning mechanisms, remains a major challenge for future research and multiple components of species’ realized niches may be important to consider. Using realized niches derived from open-source occurrence records can be a simple and widely applicable tool to help identify when biodiversity responds to the microclimate component of land-use change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号