首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mark Coleman 《Plant and Soil》2007,299(1-2):195-213
In forest trees, roots mediate such significant carbon fluxes as primary production and soil CO2 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (<1 mm), medium roots (1 to 5 mm) and coarse roots (>5 mm) were sampled to determine spatial distribution in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a whole-root-system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstrate the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fine-root biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum’s root characteristics and its response to resource availability were similar to the other broadleaved species, despite its functional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation and fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by drip tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements. The US Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper. Mention of a commercial or proprietary product does not constitute endorsement or recommendation by the USDA Forest Service.  相似文献   

2.
Decomposition of fine roots is a fundamental ecosystem process that relates to carbon (C) and nutrient cycling in terrestrial ecosystems. However, this important ecosystem process has been hardly studied in Patagonian ecosystems. The aim of this work was to study root decomposition and nutrient release from fine roots of grasses and trees (Nothofagus antarctica) across a range of Patagonian ecosystems that included steppe, primary forest and silvopastoral forests. After 2.2 years of decomposition in the field all roots retained 70–90% of their original mass, and decomposition rates were 0.09 and 0.15 year?1 for grass roots in steppe and primary forest, respectively. For N. antarctica roots, no significant differences were found in rates of decay between primary and silvopastoral forests (k = 0.07 year?1). Possibly low temperatures of these southern sites restricted decomposition by microorganisms. Nutrient release differed between sites and root types. Across all ecosystem categories, nitrogen (N) retention in decomposing biomass followed the order: tree roots > roots of forest grasses > roots of steppe grasses. Phosphorus (P) was retained in grass roots in forest plots but was released during decomposition of tree and steppe grass roots. Calcium (Ca) dynamics also was different between root types, since trees showed retention during the initial phase, whereas grass roots showed a slow and consistent Ca release during decomposition. Potassium (K) was the only nutrient that was rapidly released from both grass and tree roots in both grasslands and woodlands. We found that silvopastoral use of N. antarctica forests does not affect grass or tree root decomposition and/or nutrient release, since no significant differences were found for any nutrient according to ecosystem type. Information about tree and grass root decomposition found in this work could be useful to understand C and nutrient cycling in these southern ecosystems, which are characterized by extreme climatic conditions.  相似文献   

3.
Posidonia oceanica is the most common, widespread and important monocotyledon seagrass in the Mediterranean Basin, and hosts a large biodiversity of species, including microorganisms with key roles in the marine environment. In this study, we ascertain the presence of a fungal endophyte in the roots of P. oceanica growing on different substrata (rock, sand and matte) in two Sicilian marine meadows. Staining techniques on root fragments and sections, in combination with microscope observations, were used to visualise the fungal presence and determine the percentage of fungal colonisation (FC) in this tissue. In root fragments, statistical analysis of the FC showed a higher mean in roots anchored on rock than on matte and sand. In root sections, an inter‐ and intracellular septate mycelium, producing intracellular microsclerotia, was detected from the rhizodermis to the vascular cylinder. Using isolation techniques, we obtained, from both sampling sites, sterile, slow‐growing fungal colonies, dark in colour, with septate mycelium, belonging to the dark septate endophytes (DSEs). DNA sequencing of the internal transcribed spacer (ITS) region identified these colonies as Lulwoana sp. To our knowledge, this is the first report of Lulwoana sp. as DSE in roots of P. oceanica. Moreover, the highest fungal colonisation, detected in P. oceanica roots growing on rock, suggests that the presence of the DSE may help the host in several ways, particularly in capturing mineral nutrients through lytic activity.  相似文献   

4.
5.
6.
  1. Plant root variations and their relations with soil moisture and nutrient supply have been well documented for many species, while effects of drought, combined with extreme poor soil nutrients, on plant roots remain unclear.
  2. Herein, we addressed root vertical distributions of two typical xerophyte semishrub species, Artemisia sphaerocephala and A. intramongolica, and their relations with soil moisture, total soil nitrogen and carbon contents in arid Hunshandake desert, China. The two species experienced similar light regimes and precipitation, but differed in soil moisture and soil nutrients.
  3. Root vertical distribution patterns (e.g., coarse root diameter, root depth and root biomass) differed considerable for the two species due to high heterogeneity of soil environments. Coarse and fine root biomasses for A. intramongolica, distributed in relatively moist fixed dunes, mainly focused on surface layers (94%); but those for A. sphaerocephala dropped gradually from the surface to 140 cm depth. Relations between root traits (e.g., diameter, root biomass) and soil moisture were positive for A. intramongolica, but those for A. sphaerocephala were negative.
  4. In general, the root traits for both species positively correlated with total soil nitrogen and carbon contents. These findings suggest that both soil moisture and poor soil nutrients were the limiting resources for growth and settlement of these two species.
  相似文献   

7.
Tree root distribution and activity are determinants of belowground competition. However, studying root response to environmental and management conditions remains logistically challenging. Methodologically, nondestructive in situ tree root ecology analysis has lagged. In this study, we tested a nondestructive approach to determine tree coarse root architecture and function of a perennial tree crop, Theobroma cacao L., at two edaphically contrasting sites (sandstone and phyllite–granite derived soils) in Ghana, West Africa. We detected coarse root vertical distribution using ground‐penetrating radar and root activity via soil water acquisition using isotopic matching of δ18O plant and soil signatures. Coarse roots were detected to a depth of 50 cm, however, intraspecifc coarse root vertical distribution was modified by edaphic conditions. Soil δ18O isotopic signature declined with depth, providing conditions for plant–soil δ18O isotopic matching. This pattern held only under sandstone conditions where water acquisition zones were identifiably narrow in the 10–20 cm depth but broader under phyllite–granite conditions, presumably due to resource patchiness. Detected coarse root count by depth and measured fine root density were strongly correlated as were detected coarse root count and identified water acquisition zones, thus validating root detection capability of ground‐penetrating radar, but exclusively on sandstone soils. This approach was able to characterize trends between intraspecific root architecture and edaphic‐dependent resource availability, however, limited by site conditions. This study successfully demonstrates a new approach for in situ root studies that moves beyond invasive point sampling to nondestructive detection of root architecture and function. We discuss the transfer of such an approach to answer root ecology questions in various tree‐based landscapes.  相似文献   

8.
Angelica dahurica is an important Chinese herbal medicine plant, and its rhizome is of high medicinal value. In recent years, a severe decline in yield has been observed in Bozhou City (China's largest A. dahurica producing area), Anhui province, China. It showed symptoms of decline, stunting, yellowing and many galls in the roots, which was the characterization of infestation by root‐knot nematodes. A survey of root‐knot nematodes on its roots was conducted in this area from June to September, 2011. Based on our results, the nematode species on A. dahurica was identified as Meloidogyne arenaria by the morphological, biochemical and molecular methods. To our knowledge, this is the first report of M. arenaria on A. dahurica in China.  相似文献   

9.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

10.
以川中丘陵区柏木低效林林窗改造初期种植的银木和香椿细根为研究对象,以未改造的柏木纯林为对照,采用LI-8100土壤碳通量测量系统测定银木、香椿和柏木1~5级细根的原位呼吸速率,并探讨细根形态结构和养分元素浓度与细根呼吸的相关关系,以揭示细根结构与功能异质性。结果表明:银木、香椿和柏木细根的直径、根长、组织碳浓度均随着根序级别的增加而增加,而它们细根的比根长、组织氮浓度和比根呼吸速率均随着根序的增加而降低,树种、根序级及其交互作用对3个树种细根形态、养分浓度和比根呼吸均有显著或极显著影响。回归分析显示,3个树种比根呼吸速率均随细根直径、比根长、N浓度变化呈现出系统性的变化,三者分别能解释64.7%、87.6%和、67.6%的比根呼吸变异。可见,细根在形态和功能上存在明显的异质性,且细根的形态特征、组织化学含量和生理功能之间存在着紧密的联系,为理解植物根系结构与功能变异提供了依据。  相似文献   

11.
In many marine ecosystems, diatoms dominate in nutrient‐rich coastal waters while coccolithiophores are found offshore in areas where nutrients may be limiting. In lab‐controlled batch cultures, mixed‐species competition between the diatom Phaeodactylum tricornutum and the coccolithophore Emiliana huxleyi and the response of each species were examined under nitrate (N) and phosphate (P) starvation. Based on the logistic growth model and the Lotka–Volterra competition model, E. huxleyi showed higher competitive abilities than P. tricornutum under N and P starvation. For both species, cell growth was more inhibited by P starvation, while photosynthetic functions (chl a fluorescence parameters) and cellular constituents (pigments) were impaired by N starvation. The decline of photosynthetic functions occurred later in E. huxleyi (day 12) than in P. tricornutum (day 9); this time difference was associated with greater damage of the photosynthetic apparatus in P. tricornutum compared with E. huxleyi. Xanthophyll cycle pigment accumulation and the transformation from diadinoxanthin to diatoxanthin was more active in E. huxleyi than P. tricornutum, under similar N and P starvation. We concluded that E. huxleyi and P. tricornutum have different mechanisms to allocate resources and energy under nutrient starvation. It appears that E. huxleyi has a more economic strategy to adapt to nutrient depleted environments than P. tricornutum. These findings provided additional evidence explaining how N versus P limitation differentially support diatom and coccolithophore blooms in natural environments.  相似文献   

12.
We developed a method using nitrocellulose membranes and image analysis to localise and quantify acid phosphatase activity in the rhizosphere of two plant species, one with cluster roots (Dryandra sessilis (Knight) Domin) and another with ectomycorrhizal roots (Pinus taeda L.). Membranes were placed in contact with roots and then treated with a solution of x, α-naphthyl phosphate and Fast Red TR. Acid phosphatase activity was visualised as a red imprint on the membrane. We quantified acid phosphatase activity by image analysis of scanned imprints. The method was used to estimate the spatial distribution of acid phosphatase activity within particular root classes (lateral roots, mycorrhizal roots, root clusters). Over 95% of the acid phosphatase activity of the root system of D. sessilis was associated with cluster roots, and between 20 and 32% of the root surface active. About 26 % of the acid phosphatase activity of the root system of P. taeda was associated with mycorrhizal roots and unsuberised white root tips and less than 10% of the root surface was active, irrespective of root type. This non-destructive method can be used for rapid, semi-quantitative assessment of acid phosphatase activity in the laboratory and in situ. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
For insects that develop on few hosts and/or have immobile immature stages, optimal oviposition theory suggests that females should seek high‐quality hosts that maximize larval development and reduce competition from conspecifics. However, there is a growing amount of evidence that suggests female choice may often be at odds with their offspring's development. Listronotus maculicollis (Kirby) (Coleoptera: Curculionidae) is a serious pest of golf course turfgrass in eastern North America. The weevil develops on few hosts and demonstrates improved fitness traits when developing on Poa annua L. (Poaceae). However, previous population studies observed either weak or no correlations between the spatial dispersion of larval populations and P. annua in the field. In this study, populations on three golf course fairways were monitored over a 4‐year period (2009–2012) to determine whether the lack of spatial associations between preferred hosts and immatures was a result of spatial scale or the density and distribution of conspecifics. Spatial Analysis by Distance IndicEs (SADIE) was used to characterize the spatial dispersion of populations of individual stages (larvae and pupae), P. annua, and turfgrass damage. Life stages were aggregated in each observation, independent of population density or the spatial dispersion of hosts. The distribution of consecutive and non‐consecutive immature stages was found to be correlated in all years, suggesting that females do not avoid patches already occupied by conspecific eggs. Surprisingly, significant spatial associations were not found between larvae and P. annua when the host plant was relatively abundant. Hence, multiple mechanisms may drive L. maculicollis oviposition site‐selection behavior, and a flexible strategy may allow the weevil to persist in areas where P. annua is not the dominant species. Future studies are required to determine what other factors (e.g., natural enemy‐free space, egg or time limitations) influence oviposition behavior.  相似文献   

14.
The frequency of hybrid formation in angiosperms depends on how and when heterospecific pollen is transferred to the stigma, and on the success of that heterospecific pollen at fertilising ovules. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Mediterranean deceptive orchid. Plants of Orchis italica and O. anthropophora were pollinated with conspecific and heterospecific pollen (first conspecific pollen then heterospecific pollen and vice versa) and molecular analysis was used to check the paternity of the seeds produced. In this pair of Mediterranean orchids, competition between conspecific and heterospecific pollen functions as a post‐pollination pre‐zygotic barrier limiting the frequency of the formation of hybrids in nature. Flowers pollinated with heterospecific pollen can remain receptive for the arrival of conspecific pollen for a long time. There is always an advantage of conspecific pollen for fruit formation, whether it comes before or after heterospecific pollen, because it overtakes the heterospecific pollen. The conspecific pollen advantage exhibited in O. italica and O. anthropophora is likely to result from the reduced germination of heterospecific pollen or retarded growth of heterospecific pollen tubes in the stigma and ovary. Overall, the results indicate that our hybrid zone represents a phenomenon of little evolutionary consequence, and the conspecific pollen advantage maintains the genetic integrity of the parental species.  相似文献   

15.
Maritime pine (Pinus pinaster) is the main tree cropping species in the Landes of Gascogne forest range in south western France. Soils are nutrient poor, sandy podzosols and site fertility is determined essentially by organic matter content and depth of water table, which is known to limit root growth. We hypothesised, with an ultimate goal of constructing a nutrient uptake model applicable to this region, that the organic top horizons together with the depth of the water table should be the most important parameters related to fine root distribution and presence of associated mycorrhiza. To test this hypothesis, we compared two adult Pinus pinaster stands, contrasting in depth of water table and soil fertility and evaluated fine roots (diameter ≤2 mm) of understory species and fine roots and ectomycorrhizal morphotypes of Pinus pinaster down to 1.2 m, using a soil corer approach. Total fine root biomass of Pinus pinaster was not significantly different between both sites (3.6 and 4.5 t ha−1 for the humid, respectively, dry site), but root distribution was significantly shallower and root diameter increased more with depth at the humid site, presumably due to more adverse soil conditions as related to the presence of a hardpan, higher amount of aluminium oxides and / or anoxia. Fine roots of Pinus pinaster represented only about 30% of total fine root biomass and 15% of total fine root length, suggesting that the understory species cannot be ignored with regards to competition for mineral nutrients and water. A comparison of the ectomycorrhizal morphotypes showed that the humid site could be characterised by a very large proportion of contact exploration types, thought to be more relevant in accessing organic nutrient sources, whereas the dry site had a significantly higher proportion of both long-distance and short-distance exploration types, the latter of which was thought to be more resistant to short-term drought periods. These results partly confirm our hypothesis on root distribution as related to the presence of soil mineral nutrients (i.e. in organic matter), point out the potential role of understory plant species and ectomycorrhizal symbiosis and are a valuable step in building a site-specific nutrient uptake model.  相似文献   

16.
Very fine roots (<0.5 mm in diameter) of forest trees may serve as better indicators of root function than the traditional category of <2 mm, but how these roots will exhibit the plasticity of species-specific traits in response to heterogeneous soil nutrients is unknown. Here, we examined the vertical distribution of biomass and morphological and physiological traits of fine roots across three narrow diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) of Quercus serrata and Ilex pedunculosa at five soil depths down to 50 cm in a broad-leaved temperate forest. In both species, biomass and the allocation of very fine roots were higher in the surface soil but lower below 10-cm soil depth compared to values for larger roots (0.5–2.0 mm). When we applied these diameter classes, only very fine roots of Q. serrata exhibited significant changes in specific root length (SRL; m g−1) and root nitrogen (N) concentrations with soil depth, whereas the N concentrations only changed significantly in I. pedunculosa. The SRL and root N concentrations of larger roots in the two species did not significantly differ among soil depths. Thus, very fine roots may exhibit species-specific traits and change their potential for nutrient and water uptake in response to soil depth by plasticity in root biomass, the length, and the N in response to available resources.  相似文献   

17.
18.
异质养分环境中一年生分蘖草本黍根系的生长特征   总被引:3,自引:0,他引:3  
为揭示黍(Panicum miliaceum L.)根系对异质养分环境的生长反应,作研究了黍根系从起始斑块向目标斑块水平生长时,时始斑块和目标斑块养分水平根生长的影响,就低养分起始珏块而言,粗根生物量,粗根长度,粗根表面积和细极长度在高养分目标斑块中的分配比例均小于其在低养分目标斑块中的分配比例,而细根长度及其密度,细根表面积指及其密度的变化恰好相反,就高养分起始斑块而言,高养分目标斑块的细根长度,细根长度密度,细根表面积指数和细根表面积密均不于低养分目标斑块,而粗根对目标斑块中养分状的反应不明显。当黍根系从桢的起始斑块进入不同的目标斑块后,目标斑块的养分状况对细根生物量及其分配无影响,而显影响细根长度和表现积,这指示细根是通过长度和表面积可塑性而不是生物量变化响应目标斑块中的养分差异。  相似文献   

19.
To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on the root growth of P. miliaceum when its roots were allowed to extend from original patch into destination patch. When the nutrient levels in the original patches were low, coarse root biomass ratio (coarse root biomass in the D/total coarse root biomass), coarse root length ratio (coarse root length in the D/total coarse root length), coarse root surface area ratio (coarse root surface area in the D/total coarse root surface area) and fine root length ratio (fine root length in the D/total fine root length) were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, while fine root length, fine root length density, fine root surface index, and fine root surface area density were smaller in the former than in the latter. When the nutrient levels in the original patches were high, fine root length, fine root length density, fine root surface area index and fine root surface density were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, coarse roots did not respond to the nutrient levels in the destination patches significantly. When the roots extended from the original patches with the same nutrient level into the destination patches with contrasting nutrient levels, fine root biomass and its percentage allocation did not respond to the nutrient levels in the destination patches significantly, whereas both root length and root surface area did. This indicates that the fine roots of P. miliaceum responded to difference in nutrient supply by plasticity in their length and surface area, rather than in their root biomass.  相似文献   

20.
We investigate the genetic variation between populations of the American sweetgum (Liquidambar styraciflua), a tree species with a disjunct distribution between northeastern Texas and Mexico, by analyzing sequences of two chloroplast DNA plastid regions in Mesoamerica. Our results revealed phylogeographical structure, with private haplotypes distributed in unique environmental space at either side of the Trans‐Mexican Volcanic Belt, and a split in the absence of gene flow dating back ca. 4.2–1.4 million years ago (MYA). Species distribution modeling results fit a model of refugia along the Gulf and Atlantic coasts but the present ranges of US and Mesoamerican populations persisted disjunct during glacial/interglacial cycles. Divergence between the US and Mesoamerican (ca. 8.4–2.8 MYA) populations of L. styraciflua and asymmetrical gene flow patterns support the hypothesis of a long‐distance dispersal during the Pliocene, with fragmentation since the most recent glacial advance (120,000 years BP) according to coalescent simulations and high effective migration rates from Mesoamerica to the USA and close to zero in the opposite direction. Our findings implicate the Trans‐Mexican Volcanic Belt as a porous barrier driving genetic divergence of L. styraciflua, corresponding with environmental niche differences, during the Pliocene to Quaternary volcanic arc episode 3.6 MYA, and a Mesoamerican origin of populations in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号