首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
It is difficult, if not impossible, to measure the placental transfer of glucose directly because of placental glucose consumption and the low A-V glucose difference across the sheep placenta. We have approached the problem of quantifying placental hexose transfer by using a nonmetabolized glucose analogue (3-O-methyl glucose) which shares the glucose transport system. We have measured the clearance by using a multisample technique permitting least squares linear computing to avoid the errors implicit in the Fick principle. The placental clearance of 3-O-methyl glucose was measured in the control condition and after the administration of insulin to the fetal circulation. A glucose clamp technique was used to maintain constant transplacental glucose concentrations throughout the duration of the experiment. A control series was performed in which the only intervention was the infusion of normal saline. In these experiments the maternal and fetal glucose concentrations remained constant as did the volume of distribution of 3-O-methyl glucose in the fetus. The maternal insulin concentration remained constant and fetal insulin concentration changed from 11 +/- 2 microU/ml to 355 +/- 51 microU/ml (P less than 0.01). In the face of this large increase in fetal plasma insulin, there was no change in the placental clearance of 3-O-methyl glucose. In the control condition the clearance was 14.1 +/- 1.0 ml/min per kg and this was 13.8 +/- 1.0 ml/min per kg in the high insulin condition. Fetal insulin may change placental glucose flux by decreasing fetal plasma glucose concentrations but does not do so by changing the activity of the glucose transport system.  相似文献   

2.
In early ovine fetal development, the placenta grows more rapidly than the fetus so that at mid-gestation the aggregate weight of placental cotyledons exceeds fetal weight. The purpose of this study was to compare two separate methods of measuring uterine blood flow and glucose and oxygen uptakes in seven mid-gestation ewes, each carrying a single fetus. Uterine blood flow to both uterine horns was measured by microsphere and by tritiated water steady-state diffusion methodology. Calculations of tritiated water blood flows and oxygen and glucose uptakes were based on measurements of arteriovenous concentration differences across each uterine horn. The distribution of blood flow and oxygen uptake between the two uterine horns was strongly correlated with placental mass distribution. The two methods gave comparable results for uterine blood flow (457 +/- 35 vs 476 +/- 35 ml/min), oxygen uptake (457 +/- 35 vs 476 +/- 35 mumol/min), and glucose uptake (63 +/- 8 vs 64 +/- 6 mumol/min). Uterine blood flow was approximately 38% of the late gestation value and 56.1 +/- 1 times higher than umbilical blood flow. Uteroplacental oxygen consumption was about 58% of late gestation measurements and 3.9 +/- 0.5 times higher than fetal oxygen uptake. We confirm that the large placental mass of mid-gestation is associated with high levels of maternal placental blood flow and placental oxidative metabolism.  相似文献   

3.
Maternal insulin and placental 3-O-methyl glucose transport   总被引:1,自引:0,他引:1  
The effects of insulin in the maternal circulation on the placental clearance of 3-O-methyl glucose were investigated in 7 animals in the presence of a constant maternal glucose concentration. While maternal insulin concentration changed from 12 +/- 4 to 175 +/- 33 mu Units/ml, the placental clearance remained constant at 16.2 +/- 1.2 (control) and 15 +/- 1.3 ml/min per kg fetus under the influence of the insulin. To test the secondary hypothesis that in the control condition the hexose transport system was saturated, we performed a further series of experiments in 6 fasted animals. In these animals the control maternal plasma insulin concentration was 2 +/- 0.3 mu Units/ml and after the infusion of insulin it increased to 562 +/- 26 mu Units/ml. Under conditions of constant maternal and fetal plasma glucose concentrations, this massive elevation of plasma insulin did not change the placental clearance of 3MeG which was 15.2 +/- 1.6 in the control condition and 13.3 +/- ml/min per kg under the influence of high insulin. We conclude that maternal insulin ranging from 2 mu Units/ml to supraphysiologic doses does not effect a physiologically significant change in placental hexose transfer. Placental glucose transfer can probably therefore, be changed only be changing the concentration of glucose in the maternal and fetal plasma.  相似文献   

4.
Six near-term ewes were instrumented to measure regional blood flows in the maternal and fetal subthoracic structures and allowed to recover for 5 days. Control blood flows were measured and 10(-3) molar forskolin was infused in the fetal hindlimb vein at 1 ml/min. After 10 min of infusion, maternal and fetal regional blood flows were measured. The fetal blood pressure was 44 +/- 3 mmHg in the control state and 40 +/- 4 mmHg after forskolin, P less than 0.056. The fetal renal vascular resistance changed from 24.4 +/- 2.4 to 17.5 +/- 1.7 mmHg.ml-1.min.g, P less than 0.005. The placenta had a control resistance of 27.7 +/- 5.0 and 25.6 +/- 5.1 mmHg.ml-1.min.g after forskolin, P less than 0.05. The placental membranes showed vasodilation: control resistance was 261 +/- 49 and 168 +/- 39 mmHg.ml-1.min.g after forskolin, P less than 0.02. The generalized vasodilation of the fetal circulation was paralleled in the maternal circulation. Forskolin, a lipid soluble diterpene, apparently had a placental clearance close to the theoretical maximum. Vasodilation was seen in the maternal renal, placental and uterine vasculatures. Maternal blood pressure was unchanged. Maternal placental vascular resistance was 47.4 +/- 3.0 mmHg.ml-1.min.g in the control state and 40.6 +/- 3.3 mmHg.ml-1.min.g after forskolin, P less than 0.02. Forskolin is a vasodilator in both the fetal and maternal circulations. The maintenance of a relatively normal blood pressure in the face of regional vasodilation shows that forskolin may have a positive inotropic effect on the fetal heart. These results indicate that neither the fetal nor the maternal ovine placental vasculature is maximally dilated in the control state.  相似文献   

5.
Placental transfer of dexamethasone in near-term sheep   总被引:2,自引:0,他引:2  
The placental transfer of 3H-dexamethasone was studied in six near-term sheep. The placental clearance of 3H-dexamethasone was 18.8 +/- 3.5 ml/min per kg of fetal weight. The clearance of dexamethasone by the fetal tissues was 9.3 +/- w.5 ml/min per kg. The maximum placental clearance was 285 +/- 24 ml/min and the degree of diffusion limitation to the placental transfer of dexamethasone was 78 +/- 4%. The placental transfer of dexamethasone is therefore limited primarily by the nature of the placental barrier.  相似文献   

6.
Although zinc is essential for normal fetal growth and development, little is known about factors that influence its transfer across the placenta. The in situ perfused guinea pig placenta model was used to study the influence of the zinc concentration of fetal circulation on maternofetal placental zinc transfer. A placenta of the anaesthetized sow was perfused (on the fetal side) with a physiological perfusate via the umbilical vessels, with the fetus excluded. The sow was infused intravenously with 65zinc as a tracer of placental Zn clearance, and with antipyrine as an indirect indicator of maternal placental blood flow. Maternal plasma and placental effluent samples collected at intervals were counted for 65zinc by gamma counter, and the absorbance of nitrosated antipyrine was measured at 350 nm. Varying the mean zinc concentration in the perfusate from 0.176 to 1.87 mg/L had no effect on relative zinc clearance calculated as zinc clearance/antipyrine clearance (mean +/- SEM; 0.085 +/- 0.010 vs. 0.114 +/- 0.018; n = 6; p greater than 0.05). The results suggest that short-term changes in fetal zinc status do not influence placental zinc transfer.  相似文献   

7.
Kopecky EA  Simone C  Knie B  Koren G 《Life sciences》1999,65(22):2359-2371
The purpose of this investigation was to measure the transfer rate and clearance of morphine across the placenta with and without naloxone. Term human placental cotyledons were perfused in vitro. The placenta was perfused with 50 ng/mL of morphine in the absence (n=4) and presence (n=5) of 100 ng/mL of naloxone. Maternal and fetal samples were collected. Student's t-test or one-way repeated measures ANOVA were used for all comparisons. The maternal-to-fetal morphine transfer rate was 0.73+/-0.44 ng/mL/min in the morphine and 0.69+/-0.26 ng/mL/min in the morphine-naloxone experiments (p=0.89). The clearance of morphine was 0.89+/-0.39 mL/min without naloxone and 0.87+/-0.27 mL/min with naloxone (p=0.92). Final morphine concentrations in the morphine experiments were 9.78+/-6.17 ng/mL (maternal) and 3.43+/-2.14 ng/mL (fetal) and 10.04+/-3.89 ng/mL (maternal) and 4.16+/-1.64 ng/mL (fetal) in the morphine-naloxone experiments. Morphine readily crosses the term human placenta. Naloxone does not alter placental transfer or clearance of morphine, suggesting that transfer across the placental barrier is not altered by changes in vascular resistance. Placental retention of morphine prolongs fetal exposure to morphine.  相似文献   

8.
Previous work from this laboratory demonstrated that the elevation of maternal plasma corticosteroid concentrations during pregnancy is important for the support of fetal development. Reducing ovine maternal plasma cortisol concentrations to nonpregnant levels stimulates homeostatic responses that defend fetal blood volume. The present study was designed to test the hypothesis that chronic decreases or increases in maternal plasma cortisol concentration alter uterine and placental blood flow and morphology. Three groups of pregnant ewes and their fetuses were chronically catheterized and studied: ewes infused with cortisol (1 mg.kg(-1).day(-1); high cortisol), ewes adrenalectomized and underreplaced with cortisol (0.5 mg.kg(-1).day(-1); low cortisol), and control ewes. The normal increment in uterine blood flow between 120 and 130 days was eliminated in the low-cortisol ewes; conversely, uterine blood flow was increased in the high-cortisol group compared with the control group. Fetal arterial blood pressure was increased in the high-cortisol group compared with controls, but there was no increase in fetal arterial pressure from 120 to 130 days of gestation in the low-cortisol group. The fetuses of both low-cortisol and high-cortisol groups had altered placental morphology, with increased proportions of type B placentomes, and overall reduced fetal placental blood flow. The rate of fetal somatic growth was impaired in both low-cortisol and high-cortisol groups compared with the fetuses in the intact group. The results of this study demonstrate that maternal plasma cortisol during pregnancy is an important contributor to the maternal environment supporting optimal conditions for fetal homeostasis and somatic growth.  相似文献   

9.
The objective of this study was to determine whether fetal urinary excretion is a major route of ethanol transfer into the amniotic fluid surrounding the fetus following maternal administration of ethanol. Conscious instrumented pregnant ewes between 130 and 137 days' gestation (term, 147 days) with (n = 3) or without (n = 3) a catheter in the fetal bladder were administered 1 g ethanol/kg maternal body weight as a 1-h maternal intravenous infusion. Maternal blood, fetal blood, and amniotic fluid samples were collected at selected times, and fetal urine was collected continuously from the bladder-cannulated fetus during the 14-h study for the determination of ethanol concentrations. Fetal urinary excretion of ethanol occurred, and the total amount of ethanol excreted represented 0.30 +/- 0.07 (SD)% of the maternal ethanol dose. The renal clearance of ethanol by the fetus was 0.43 +/- 0.06 mL/min. The pharmacokinetics of ethanol in the maternal-fetal unit and the amniotic fluid for the bladder-cannulated fetal preparation were similar to the data for the nonbladder-cannulated preparation. The data indicate that fetal urinary excretion of ethanol is a secondary route of ethanol transfer into the amniotic fluid. It would appear that diffusion of ethanol across membranes from the maternal and fetal circulations is a major route of ethanol transfer into this intrauterine compartment.  相似文献   

10.
To determine the critical level of maternal exercise which produces effects on fetal weight and placental diffusing capacity, we measured the relationship between increasing levels of exercise and its effect on the fetus. Hartley guinea pigs with dated pregnancies were exercised on a treadmill (9.7 m/min at a 6.5% gradient) at one of five exercise levels (0, 15, 30, 45, and 60 min/day). We measured placental diffusing capacity for carbon monoxide (DPCO) fetal body and organ weights, placental weight, and maternal body and heart weights near term (63-64 days). Fetal body weight, kidney weight, and placental weight decreased as a function of increasing exercise level, decreasing 13, 13, and 21% respectively at 60 min/day exercise. DPCO1 decreased from a control value of 2.92 +/- 0.23 to 2.33 +/- 0.10 ml. min-1 torr-1 kg fetal wt in the 15 min/day exercise group, 2.17 +/- 0.08 in the 30 min/day group 2.16 +/- 0.11 in the 45 min/day group, and 2.65 +/- 0.31 in the 60 min/day exercise group. The decrease in placental weight along with the decrease in DPCO per kg of fetal weight suggests that with progressive maternal exercise the fetus is compromised by a smaller than normal placenta with less diffusing capacity.  相似文献   

11.
To separate heat production of the fetus from that of the placenta, endometrium, and uterine muscle, we measured total uterine heat production first with the fetus intact and then after the umbilical cord was snared and the fetus killed. Heat production was measured with the Fick principle using thermistors chronically implanted in a maternal artery and major uterine vein and a flowmeter placed on the common internal iliac artery. In nine ewes, carrying lambs weighing 4.46 +/- 0.42 (SE) kg, total uterine heat production fell from 10.6 to 2.9 W after fetal death. Uterine blood flow fell progressively to 90% of control levels during the first hour after death. The caloric equivalent for O2 averaged 4.1 cal/ml O2 for the uterus, 2.2 for the uteroplacenta, and 4.6 for the fetus per se. It was not possible to explain these results using a simple model of maternal-fetal heat transfer. Rather, it was necessary to assume an additional pathway for heat transfer between small uterine veins on the surface of the uterus and cooler structures in the maternal abdomen, presumably the ventral abdominal wall.  相似文献   

12.
The metabolism by the fetus and placenta of [2-3H, U-14C]glucose infused into fetal sheep has been studied. Uptake of glucose from the fetus by the placenta and transfer to the ewe, as well as placental metabolism of glucose to fructose and lactate have been quantified. About two-thirds of the glucose removed from the fetal circulation was taken up by placenta. Less than 15% of this passed back into the maternal circulation, the remainder was converted, at roughly equivalent rates, into lactate and fructose, most of which was transferred back to the fetus. It seems likely that little of this glucose is oxidised by the placenta. This data indicates that there are substrate cycles between the placenta and fetus, one possible function of which is to limit fetal glucose loss back to the mother; lactate and fructose have limited placental permeability. At uterine blood flow rates in the middle of the normal range net glucose uptake by the placenta from the maternal circulation was about 7-fold higher than that from the fetus. About 20% of this was transported to the fetus, 50% was oxidised and much of the remainder converted to lactate and transferred back to the ewe. Labelling patterns in fructose and lactate make it unlikely that this placental pool of glucose mixes freely with that derived from uptake from the fetus. Net movement of glucose across the placenta is markedly influenced by fluctuations in uterine blood flow over the normal range of 500-3000 ml/min. At low flow rates there is net output of glucose from the fetus to the placenta, and in some instances from the placenta to the ewe, i.e. there is evidence of net utero-placental production of glucose to the ewe separate from output by the fetus. There is a close linear relationship between uterine glucose supply (maternal arterial concentration x uterine blood flow) and net balance across the placenta. As uterine supply of glucose falls there is increased uptake by the placenta of glucose from the fetal circulation and corresponding enhanced recycling of fructose and lactate to the fetus. This production of fructose and lactate by the placenta may function to reduce glucose loss from the fetus to the ewe. Hence at high rates of placental uptake of glucose from the fetus placental production of lactate and particularly fructose may approach saturation and allow significant backflow of glucose from the fetus to the ewe. Under these conditions glucose uptake may in part sustain placental oxygen consumption.  相似文献   

13.
The extent of placental transfer of medetomidine and ketamine is unknown in pregnant ewes. Date-mated singleton (n = 8) and twin (n = 8) pregnant merino cross ewes were anaesthetized for Caesarean delivery of preterm lamb fetuses. A combination of medetomidine (20 μg/kg) and ketamine (10 mg/kg) was administered by intravenous injection and surgery performed immediately thereafter. Blood samples were collected from the ewe at one, five and 10 min after intravenous injection and from the umbilical vein of the fetus at delivery. Non-pregnant ewes were also anaesthetized (n = 8). There was no difference in the plasma concentration of medetomidine or ketamine when comparing singleton and twin ewes or pregnant and non-pregnant ewes for the short duration of the study. Fetal plasma concentrations of each drug were comparable to the maternal concentrations at the same time. We conclude that both drugs cross the placenta readily and provide anaesthesia and analgesia for the fetus when it is delivered.  相似文献   

14.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

15.
Concentrations of prostaglandins E and F (PGE and PGF) were measured in the embryo or fetus, extra embryonic or fetal membranes (membranes), intercaruncular and caruncular endometrium and plasma collected from uterine and ovarian arterial and venous vessels from separate groups of ewes laparotomized at 5 day intervals from day 10 to day 55 of pregnancy. Our purpose was to investigate the role of prostaglandins E and F in the maternal recognition of pregnancy, implantation and early placental function. Our data suggest that the initial maintenance of the corpus luteum in the pregnant ewe does not involve a reduction in PGF production, compared to pregnant ewes; but a change in the pattern of PGF secretion. This is accompanied by an elevation in PGE production of similar magnitude to that observed in non pregnant ewes. The extra embryonic/fetal membranes appear to be the major source of elevated PGF levels in the maternal circulation prior to day 30 of pregnancy. Between days 35 and 55 of gestation the rising PGF levels in maternal serum probably come from the fetus. Over the same period PGE levels rise in the fetus and intercaruncular endometrium, but PGE secretion into the maternal circulation is not enhanced. A role for PGF and PGE in fetal, placental and uterine growth is suggested; placental and uterine endocrine function may also be targets.  相似文献   

16.
Placental transfer of glucose   总被引:2,自引:0,他引:2  
The rates of glucose transfer from maternal blood to pregnant uterus and from placenta to fetus were measured in eight sheep at spontaneously occurring glucose concentrations (control state) and while the fetus, the mother, or both were receiving a constant infusion of glucose. In addition two fetuses received insulin infusions. In the control state the net glucose flux from placenta to fetus was only 27 +/- 2.6% (SEM) of the net flux from the uterine circulation to the pregnant uterus. An empirical equation describing the relationship between placental glucose transfer and arterial plasma glucose concentrations was derived from the data and compared with equations constructed on the basis of methematical models of placental function. This analysis indicates that: (1) placental glucose transfer is mediated by carriers with Km approximately equal to 70 mg/dl; (2) the rate of glucose transfer from mother to fetus is limited primarily by the transport characteristics and glucose consumption rate of the placenta; (3) under normal conditions of placental perfusion, glucose transfer is approximately 15% less than it would be if placental blood flows were infinitely large.  相似文献   

17.
The present study determined the placental and whole-body metabolism of androstenedione originating in the maternal and fetal compartments of the pregnant baboon at mid (day 100; n = 4) and late (day 165; n = 3) gestation (term = day 184) in untreated animals and at midgestation in animals (n = 3) treated with pellets (50 mg) of androstenedione inserted at 8-day intervals in the mother between days 70 and 100 of gestation. Baboons were anesthetized with ketamine-halothane-nitrous oxide, blood samples obtained from maternal, uterine, fetal and umbilical vessels during constant infusion of [3H] or [14C]androstenedione via the fetal or maternal circulation, respectively, and radiolabeled precursor/products in plasma purified by HPLC. The metabolic clearance rate (MCR; 1/day/kg body wt) of androstenedione in the mother was similar at mid (81 +/- 6) and late (69 +/- 12) gestation and was unaltered by treatment with androstenedione (92 +/- 17). Fetal MCR of androstenedione was 3-fold greater (P less than 0.05) than in the mother and was similar in the three treatment groups. In the maternal compartment, the conversion ratio of androstenedione to estradiol (range 26-37%) exceeded (P less than 0.05) that to testosterone (range 15-19%) which exceeded (P less than 0.05) that to estrone (range 7-14%), a pattern unaffected by stage of gestation or treatment with androstenedione in vivo. Similar results were observed in the fetal compartment although values for each conversion were always 3-4-fold lower (P less than 0.05) than in the maternal compartment. Regardless of stage of gestation or treatment with androstenedione, [14C]estradiol in the uterine vein (95 +/- 15 cpm/ml) exceeded (P less than 0.05) that in the umbilical vein (3 +/- 1) indicative of preferential secretion of estradiol to the maternal compartment. In contrast, the concentration of [14C]estrone in uterine (15 +/- 4) and umbilical (18 +/- 4) vessels were similar indicating that estrone was secreted equally into the mother and fetus. Similar observations were noted for respective values for [3H]estrogens derive from fetal [3H]androstenedione. Placental extraction of fetal androstenedione (range 86-93%) exceeded (P less than 0.05) that for androstenedione originating in the mother (range 44-54%) and neither were affected by stage of gestation or treatment with androstenedione in vivo. Less than 1% of fetal [3H]androstenedione reached the maternal circulation unaltered, presumably due to placental catabolism. Similarly, the concentration of maternally-derived [14C]androstenedione present in fetal plasma (less than 5%) was minimal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
To study the effects of reduced uterine blood flow on fetal and placental metabolism, adrenaline has been infused at physiological doses (0.5 microgram/min per kg) into the circulation of the pregnant sheep. This gives a reduction of about one third of uterine blood flow at days 120-143 of pregnancy, but causes no significant change in umbilical blood flow. In contrast to the effects of constricting the uterine artery to reduce blood flow to a similar degree, placental oxygen consumption was reduced and that, together with a large increase in lactate production, indicated the placenta became hypoxic. The fetal blood gas status and hence oxygen consumption was not affected significantly. A consistent arterio-venous difference for glucose across the umbilical or uterine circulations was not detected unless the uterine blood flow was comparatively high. Glucose balance across the uterus showed a close linear relationship with uterine blood flow and more particularly with the supply of glucose to the uterus. There was clear evidence for glucose uptake by the placenta and fetus and also glucose output by both. The latter was more common when uterine blood flow was comparatively low or reduced by adrenaline infusion. The results are consistent with the concept that glucose supply has to be maintained to the placenta even at the expense of fetal stores, although lactate can substitute if there is enhanced output because of fetal hypoxia. They indicate that placental mobilisation of glycogen can lead to a net output of glucose to the mother. The manner of communicating to the fetus changes in placental state that occur during maternal adrenaline infusion is not clear. However towards the end of the 60 min infusion, elevation of fetal plasma adrenaline, probably resulting from a breakdown of the placental permeability barrier, may be an important signal.  相似文献   

19.
In vivo metabolism of calcitriol in the pregnant rabbit doe   总被引:1,自引:0,他引:1  
The production rate, the disappearance rate and the half life of calcitriol in gravid rabbit does at 24 days of gestation were compared, under unstressed steady state conditions, to those of nonpregnant animals. The contribution of the fetoplacental unit to the circulating levels of fetal calcitriol was also assessed. The calcitriol levels (139.6 +/- 19.9 vs 55.3 +/- 8.8 pmol/l and production rates (113.9 +/- 8.8 vs 59.2 +/- 9.2 pmol/min/Kg) were higher in pregnant than in nonpregnant animals (P less than 0.01). However, clearance rates (1.07 +/- 0.18 vs 1.12 +/- 0.20 ml/min/Kg and circulating half life (442 +/- 49 vs 368 +/- 35 min; NS) were similar in both groups of animals. Fetal levels (62.3 +/- 1.6 pmol/l) and specific activity (11166 +/- 864 dpm/pmol) of calcitriol were lower than those of the respective mothers (P less than 0.005). Taken together these data suggest that, calcitriol is transported through the placenta; and that the fetoplacental unit contributes to the fetal and perhaps to the maternal calcitriol levels.  相似文献   

20.

Background

Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model.

Methods

Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check.

Results

A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated.

Conclusions

For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an important influence on the pharmacokinetics of propofol during pregnancy. Much lower propofol concentration in the fetus compared to maternal concentrations explain limited placental transfer in in-vivo paired model, and less direct fetal cardiac depression we observed earlier with propofol supplemented inhalational anesthesia compared to higher dose inhalational anesthesia in humans and sheep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号