首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parasitic wasp Eretmocerus mundus (Hymenoptera: Aphelinidae), a natural enemy of the silverleaf whitefly Bemisia argentifolii (Homoptera: Aleyrodidae), deposits eggs beneath nymphs and not within them. Experiments were designed to establish whether ovipositing E. mundus females leave marking chemicals on nymphs to enable searching females to discriminate parasitized from unparasitized hosts. Cuticular lipids from three experimental treatment groups were characterized: parasitoid-exposed nymphs that had a parasitoid egg between the nymph and leaf; control nymphs not exposed to E. mundus; and a third treatment condition of parasitized nymphs, held for 10 days after wasp exposure. Lipids were solvent-extracted from the nymphal cuticles of the various treatment groups and the lipid components were characterized and quantified by gas chromatography and mass spectrometry. Results indicated the presence of quantities of C31 and C33 dimethylalkanes only from parasitoid-exposed groups of nymphs and not in the extracts from control nymphs or the parasitized nymphs after 10-day exposure. Furthermore, the C31 and C33 dimethylalkanes were shown to be major lipid components of the hexane extracts from E. mundus females. Since the lipids were removed from parasitoid-exposed nymphs before interaction with hatched parasitoid larvae, the findings indicated that the dimethylalkanes were transferred onto nymphal cuticles by ovipositing E. mundus females.  相似文献   

2.
Beauveria bassiana and Paecilomyces fumosoroseus are generalist entomopathogenic fungi that infect the silverleaf whitefly (Bemisia argentifolii). We found second and third instar whiteflies to be the most susceptible larval stage to both fungi. Conidia of B. bassiana germinated most readily on the cuticle of second instars (54% germinated) and P. fumosoroseus germination was highest on third instar cuticle (45%). Fourth instars (the ultimate instar) had low susceptibility to these pathogens, and spore germination on the cuticle of fourth instars was very low for B. bassiana (7%) and intermediate for P. fumosoroseus (33%). Cuticular lipids were found to have toxic or inhibitory effects on conidia of B. bassiana and P. fumosoroseus when the spores were germinated on nutrient agar in the presence of the lipids. In the absence of added nutrients, P. fumosoroseus conidial germination increased in the presence of the lipids. To test if the inhibitory effects of the lipids were due solely to hydrophobicity (preventing water from coming into contact with the conidia) we tested the effects of synthetic long-chain wax esters. The synthetic wax esters inhibited germination of P. fumosoroseus to a degree that was similar to the effect of the cuticular lipid extracts, but the synthetic lipids did not have a significant effect on B. bassiana. Thus, the thick coating of long-chain wax esters produced by whitefly nymphs affect spore germination of fungal pathogens, but whether they play a significant role in defense against disease is not clear.  相似文献   

3.
The identification and composition of the fatty acids of the major lipid classes (triacylglycerols and phospholipids) within Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) nymphs were determined. Comparisons were made to fatty acids from the internal lipids of B. argentifolii adults. The fatty acids, as ester derivatives, were analyzed by capillary gas chromatography (CGC) and CGC-mass spectrometry (MS). All lipid classes contained variable distributions of eight fatty acids: the saturated fatty acids, myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), arachidic acid (20:0); the monounsaturated fatty acids, palmitoleic acid (16:1), oleic acid (18:1); the polyunsaturated fatty acids, linoleic acid (18:2), linolenic acid (18:3). Fourth instar nymphs had 5-10 times the quantities of fatty acids as compared to third instar nymphs and 1-3 times the quantities from adults. The fatty acid quantity differences between fourth and third instar nymphs were related to their size and weight differences. The percentage compositions for fatty acids from each lipid class were the same for the pooled groups of third and fourth instar nymphs. For nymphs and adults, triacylglycerols were the major source of fatty acids, with 18:1 and 16:0 acids as major components and the majority of the polyunsaturated fatty acids, 18:2 and 18:3 were present in the two phospholipid fractions, phosphatidylethanolamine and phosphatidylcholine. Evidence was obtained that whiteflies indeed synthesize linoleic acid and linolenic acid de novo: radiolabel from [2-(14)C] acetate was incorporated into 18:2 and 18:3 fatty acids of B. argentifolii adults and CGC-MS of pyrrolidide derivatives established double bonds in the Delta(9,12) and Delta(9,12,15) positions, respectively.  相似文献   

4.
The nymphs and pupae of the giant whitefly, Aleurodicus dugesii, produce large quantities of external lipids, both as waxy particles and as waxy filaments. The nymphs and pupae extrude filaments from two dorsal rows of five pores each. Filaments can attain lengths of 5-8 cm. The external lipids of nymphs and pupae consist largely of long-chain aldehydes, alcohols, acetate esters and wax esters. Hydrocarbons are minor components. Soon after hatching, the nymph produced an unidentified waxy fringe extruded laterally from its margin. After molting to the second instar, long, hollow, waxy filaments were produced by the immature stages. The major lipid class associated with the filaments was saturated wax esters (89%), mainly C44, C46 and C60. Associated with formation of the filaments were waxy particles in the shape of curls, which peeled off of the extruding filaments. Similar but more tubular-shaped curls were also produced by numerous lateral pores so that, eventually, the curls completely camouflaged the nymph. The major lipid class of the curls was wax esters (50%), mainly C44 and C46. The cuticular surface lipids of the nymphs were mainly long-chain aldehydes (43%) and wax esters (27%). Unsaturated fatty acid moieties constituted 2 and 19% of the wax esters of curls and nymph cuticular surface lipids, respectively. The major lipid classes of pupae and of their palisade were long-chain aldehydes and alcohols. No unsaturated wax esters were detected in the filaments, but 30% of pupal and 21% of palisade surface wax esters were unsaturated in their fatty acid moieties, 16:1, 18:1 and 20:1.  相似文献   

5.
Amitus bennetti Viggiani and Evans, Encarsia formosa Gahan (two strains), Eretmocerus eremicus Rose and Zolnerowich, Eretmocerus mundus Mercet and Eretmocerus staufferi Rose and Zolnerowich, which are parasitoids of Bemisia argentifolii Bellows and Perring were compared with respect to their searching behaviour as part of a pre-introduction evaluation programme. Within a 5 cm arena, host-finding time was independent of the release distance from the host. Before oviposition, A. bennetti walked fastest, the E. formosa strains walked slowest and the Eretmocerus species intermediate. Leg length was not the most significant factor determining the differences in walking speed. After oviposition, A. bennetti and Er. eremicus had a lower walking speed and higher turn rate which is an indication of area-restricted search. The effect was strongest for A. bennetti . All species showed preference for counter-clockwise turns. Based on the walking speed alone, it is expected that A. bennetti will be the most efficient natural enemy of B. argentifolii , the Eretmocerus species intermediate and the E. formosa strains the least.  相似文献   

6.
《Biological Control》2001,20(2):122-131
The compatibility of five insect growth regulators (IGRs), buprofezin, pyriproxyfen, fenoxycarb, pymetrozine, and kinoprene, were tested in the laboratory for compatibility with the whitefly parasitoid Eretmocerus eremicus Rose and Zolnerowich (Hymenoptera: Aphelinidae). The survivorship of adult parasitoids foraging on poinsettia leaves with residues 6, 24, and 96 h of age was determined. The toxicity of Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) patches treated with IGRs presented to female parasitoids 24 and 96 h posttreatment was quantified. Survivorship of immature E. eremicus developing within B. argentifolii nymphs was determined by treating whitefly nymphs with IGRs 5 and 13 days postoviposition by female parasitoids. Finally, behavioral observations of female parasitoids foraging on IGR-treated and untreated B. argentifolii patches presented simultaneously were quantified to determine whether IGR residues had a repellant effect toward E. eremicus. Averaging ranks for IGRs based on their compatibility with E. eremicus and their ability to kill B. argentifolii nymphs produced the following parasitoid compatibility order: buprofezin > fenoxycarb > pymetrozine = pyriproxyfen > kinoprene. Further work in greenhouses assessing the efficacy of buprofezin with E. eremicus for B. argentifolii control on poinsettias is recommended.  相似文献   

7.
Entomopathogenic fungi of the genus Aschersonia are specific for whitefly and scale insects. They can be used as biological control agents against silverleaf whitefly, Bemisia argentifolii and greenhouse whitefly, Trialeurodes vaporariorum. Forty-four isolates of Aschersonia spp. were tested for their ability to sporulate and germinate on semi-artificial media and to infect insect hosts. Seven isolates sporulated poorly (less than 1x10(7) conidia/dry weight) and 10 were not able to infect either of the whitefly species. Several isolates were able to produce capilliconidia. Infection level was not correlated with germination on water agar. After a selection based on spore production and infection, virulence of 31 isolates was evaluated on third instar nymphs of both whitefly species on poinsettia (Euphorbia pulcherrima). Whitefly infection levels varied between 2 and 70%, and infection percentages of B. argentifolii correlated with that of T. vaporariorum. However, mortality was higher for T. vaporariorum than for B. argentifolii, as a result of a higher 'mortality due to unknown causes.' Several isolates, among which unidentified species of Aschersonia originating from Thailand and Malaysia, A. aleyrodis from Colombia, and A. placenta from India showed high spore production on semi-artificial medium and high infection levels of both whitefly species.  相似文献   

8.
The broad mite Polyphagotarsonemus latus (Banks) and silverleaf whitefly Bemisia argentifolii Bellows & Perring (=B strain of Bemisia tabaci (Gennadius)) have many common host plants. It was found that broad mites can attach themselves to B. argentifolii adults and use them as a carrier for their dispersal. In a cage experiment, we observed that more than 80% of B. argentifolii adults had more than one broad mite attached within 4 h after B. argentifolii landed on broad mite-infested plants. Overall, 97.5% of the broad mites examined were attached to the legs, mostly on the tibiae and tarsi of B. argentifolii adults, and 99.5% of the broad mites attached to B. argentifolii were adult females. The successful dispersal of broad mite via B. argentifolii was also demonstrated with a cage experiment.  相似文献   

9.
The whitefly Bemisia argentifolii Bellows & Perring is a major pest of tomatoes, causing an irregular ripening disorder characterized externally by incomplete or inhibited reddening of fruit, especially in longitudinal sections, and internally by an increase in the amount of white tissue. Experiments were undertaken during the spring and fall of 1997 and 1998 and the spring of 1999 to develop an action threshold for applying the insect growth regulators (IGRs) buprofezin and pyriproxyfen to manage B. argentifolii and irregular ripening. The IGRs were applied when predetermined thresholds were reached and were compared with a high rate of the systemic insecticide imidacloprid, which was applied at transplanting and provided season-long whitefly control. Only plots treated when the numbers of sessile nymphs (second through fourth instars) reached five per 10 leaflets consistently had both external and internal irregular ripening severity ratings similar to the imidacloprid standard. Results were similar for buprofezin and pyriproxyfen even though the modes of action differ. The five nymphs per 10 leaflets threshold lends itself to field scouting because nymphal counts completed in the field using the unaided eye supplemented with a 10x hand lens were linearly and significantly related to counts completed in the laboratory with a dissecting microscope.  相似文献   

10.
Host-parasite interactions between whiteflies and their parasitoids   总被引:1,自引:0,他引:1  
There is relatively little information available concerning the physiological and biochemical interactions between whiteflies and their parasitoids. In this report, we describe interactions between aphelinid parasitoids and their aleyrodid hosts that we have observed in four host-parasite systems: Bemisia tabaci/Encarsia formosa, Trialeurodes vaporariorum/E. formosa, B. tabaci/Eretmocerus mundus, and T. lauri/Encarsia scapeata. In the absence of reported polydnavirus and teratocytes, these parasitoids probably inject and/or produce compounds that interfere with the host immune response and also manipulate host development to suit their own needs. In addition, parasitoids must coordinate their own development with that of their host. Although eggs are deposited under all four instars of B. tabaci, Eretmocerus larvae only penetrate 4th instar B. tabaci nymphs. A pre-penetrating E. mundus first instar was capable of inducing permanent developmental arrest in its host, and upon penetration stimulated its host to produce a capsule (epidermal in origin) in which the parasitoid larva developed. T. vaporariorum and B. tabaci parasitized by E. formosa initiated adult development, and, on occasion, produced abnormal adult wings and eyes. In these systems, the site of parasitoid oviposition depended on the host species, occurring within or pressing into the ventral ganglion in T. vaporariorum and at various locations in B. tabaci. E. formosa's final larval molt is cued by the initiation of adult development in its host. In the T. lauri-E. scapeata system, both the host whitefly and the female parasitoid diapause during most of the year, i.e., from June until the middle of February (T. lauri) or from May until the end of December (E. scapeata). It appears that the growth and development of the insects are directed by the appearance of new, young foliage on Arbutus andrachne, the host tree. When adult female parasitoids emerged in the spring, they laid unfertilized male-producing eggs in whiteflies containing a female parasitoid [autoparasitism (development of male larvae utilizing female parasitoid immatures for nutrition)]. Upon hatching, these male larvae did not diapause, but initiated development, and the adult males that emerged several weeks later mated with available females to produce the next generation of parasitoid females. Thus, the interactions that exist between whiteflies and their parasitoids are complex and can be quite diverse in the various host-parasitoid systems.  相似文献   

11.
The ability of two species of aphelinid parasitoids to find and attack Bemisia argentifolii was determined. Experiments were conducted with whitefly patches on single leaf poinsettia plants randomly distributed in canopies of four commercially grown poinsettia crops at an early and late stage of plant growth. Eretmocerus eremicus found experimental patches in canopies of small and large plants more quickly and frequently, and killed more nymphs following patch discovery than Encarsia formosa (Beltsville strain). E. eremicus exhibited a Type I functional response in small and large canopies while E. formosa (Beltsville strain) showed a Type II functional response in small canopies and a weak linear response in large canopies. In greenhouses treated with E. eremicus, canopy size increased 4.6× and nymphs per plant increased 14.2× between small and large canopy experiments. Consequently, area of search for this parasitoid increased 83%, number of wasps counted on patches decreased 74%, and proportion of nymphs killed in artificial patches decreased 47% between small and large canopies. In greenhouses treated with E. formosa Beltsville strain, canopy size increased 7.3× and nymphs per plant increased 25.4× between small and large canopy experiments. Consequently for E. formosa Beltsville strain, area of search increased 11%, number of wasps counted on patches decreased 86%, and proportion of nymphs killed in artificial patches decreased 47% between small and large canopies.  相似文献   

12.
We investigated the effects of different host: parasitoid ratios on the efficacy of the parasitoid Eretmocerus mundus attacking the silverleaf whitefly, Bemisia argentifolii. When host density was held constant (100 second instars) and parasitoid density was decreased from 15 to 1 females, the percentage of total host mortality was significantly lower at low parasitoid densities. The number of host nymphs killed, and the number of female parasitoid progeny per female, increased 3.6 and 20.4 times, respectively. The emergence rate, sex ratio, longevity, and body lengths of progeny were significantly larger at the lowest parasitoid density while developmental time was significantly shorter. When the number of hosts was increased from 5 to 250 and parasitoid density was held constant (5 females), the percentage of nymphal mortality decreased 1.6 times. The percentage of desiccated nymphs was significantly highest (65.7%) at the lowest host density, while percentage parasitism (34.3%) was significantly lowest at the lowest host density. The data could be described using a Type I functional response curve. We propose a generalized index of efficacy (GIE) to summarize and compare the total effects of parasitoid--host ratios. This index showed that the most efficient ratio was one parasitoid female per ten second instar host nymphs.  相似文献   

13.
Fungi are the only effective entomopathogens of members of the Aleyrodidae and other homopterans because of the piercing and sucking feeding strategy of these insects. The laboratory assessment of the entomopathogenic activity of fungi often requires a prolonged period of observation. Leaf quality can be the limiting factor in bioassays of fungi against whiteflies that require longer observation periods or those that require conditions that are as close to natural ones as possible. A bioassay system is described that utilizes rooted cabbage leaves infested with the highly polyphagous whitefly, Bemisia argentifolii . Using this method, discriminating dosages of aerial conidia and blastospores of two isolates of Paecilomyces fumosoroseus (Pfr) were bioassayed against eggs and nymphs of B. argentifolii . Low, but significant, mortality (10-20%) of eggs was observed 14 days after exposure to 3.8 104 blastospores/cm2 for the Pfr 97 and European Biological Control Laboratory (EBCL) Pfr 42 isolates. Additionally, the majority of crawlers that had hatched from treated eggs died on the surface of the leaves. Exposure of early second-instar nymphs of B. argentifolii to 3.8 103 conidia or blastospores/cm2 of Pfr 97 resulted in mortalities of 27 and 77% respectively. Identical dosages of conidia and blastospores of the Pfr 42 isolate resulted in mortalities of 59 and 68% respectively. The bioassay method described enables the comparative evaluation of entomopathogenic fungi against whiteflies under diverse biotic and abiotic conditions.  相似文献   

14.
The tobacco whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), is a key pest in commercial sweet pepper crops in southeast Spain. Its biological control is currently based on augmentative introductions of the parasitic wasp Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae), which need to be occasionally supplemented with pesticide applications. These pesticides can be harmful for the biological control agents. Therefore, it is important to improve the current strategy by reducing dependency on pesticides. Two potential solutions are conceivable: addition of another effective biocontrol agent or application of pesticide prior to the release of biocontrol agents. The mirid bug Nesidiocoris tenuis Reuter (Heteroptera: Miridae) and the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) are promising candidates as additional biocontrol agents. The aim of the present study was to test these possible solutions in two subsequent trials, i.e., a 'selection' and an 'improvement' experiment. In the selection experiment, four treatments were compared: E. mundus , N. tenuis  +  E. mundus , A. swirskii  +  E. mundus , and A. swirskii  +  N. tenuis  +  E. mundus . Amblyseius swirskii appeared able to significantly increase effectiveness against the pest, in contrast to N. tenuis, which did not contribute to whitefly control. The best strategy was the combination of E. mundus and A. swirskii . In the improvement experiment, three treatments were compared: E. mundus , A. swirskii  +  E. mundus , and A. swirskii  +  E. mundus +  pesticides. Amblyseius swirskii again proved capable of significantly reducing whitefly populations, and the implementation of pesticides before the release of the biocontrol agents was shown to increase the effectiveness against the pest even more.  相似文献   

15.
Adult whiteflies are characterized by the presence of copious amounts of wax particles covering all surfaces of the body except the eyes. The lipid composition was determined for wax particles removed from the surfaces of the sweetpotato whitefly, Bemisia tabaci (Gennadius), and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). The lipid components in the wax particles of both species were mostly mixtures of long-chain aldehydes and long-chain primary alcohols. The major wax particle components for B. tabaci were C34 aldehyde and C34 alcohol and small amounts of C32 aldhyde and alcohol. For the wax particles from T. vaporariorum, C32 aldehyde and C32 alcohol were the major components with lesser amounts of the C30 components. These findings were compared to the surface lipids of fully-waxed B. tabaci and T. vaporariorum adults that contained, in addition to the major amounts of long-chain aldehydes and alcohols, quantities of long-chain wax esters. Wax esters were not present in lipid extracts from the surface of B. tabaci whiteflies at the time of adult emergence (prior to deposition of wax particles). Thus, the appearance of wax esters on the cuticular surfaces occurred during the period of deposition of wax particles. The quantities of wax esters in the surface lipid extracts of wing tissues separated from the bodies of adult whiteflies indicated that the wing surfaces were a major site of wax ester deposition.  相似文献   

16.
The total surface lipids, including the wax particles, of the adult whiteflies of Bemisia tabaci and Trialeurodes vaporariorum were characterized. At eclosion, there were similar amounts of long-chain hydrocarbons, aldehydes, alcohols and wax esters. Within a few hours post-eclosion, long-chain aldehydes and long-chain alcohols were the dominant surface lipid components, C34 on B. tabaci and C32 on T. vaporariorum. Hydrocarbons, mainly n-alkanes, were minor components of the surface lipids. The major wax esters were C46 on B. tabaci and C42 on T. vaporariorum. The major acid and alcohol moieties in the wax esters of B. tabaci were C20 and C26, respectively, and of T. vaporariorum were C20 and C22, respectively. Both B. tabaci and T. vaporariorum had a minor wax ester composed of the fatty acid C18:1 esterified to the major alcohols, C34 and C32, respectively. Bemisia were readily distinguished from Trialeurodes based on the composition of their wax particles and/or their wax esters; however, no differentiating surface lipid components were detected between biotypes A and B of B. tabaci.  相似文献   

17.
Abstract Thelyotokous biotype of Eretmocerus mundus Mercet (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was recently recorded in northern Iran. Reproductive biology of this biotype was studied as part of an evaluation of its potential for biological control of B. tabaci. The parasitoid deposited more eggs under 2nd and 3rd nymphal instars than 1st or 4th instars. Adult females fed honey, with no access to whitefly nymphs, lived significantly longer (13.6 ± 4.7 d) than those given access to nymphs, but not fed honey (7.6 ± 2.21 d). Lifetime fecundity averaged 81.7 ± 26.9 female progeny per female parasitoid, ranging from 11–132. Daily fecundity, measured as the number of whitefly nymphs parasitized by per female each day for 10 d, averaged 18.06 ± 3.95 for the first 6 d of life, and then declined to < 11. Developmental time from oviposition to parasitoid emergence was significantly shorter in the 3rd instar of the host (15.9 ± 1.06 d) than in the 1st instar (18.7 ± 2.3 d), but not in the 2nd instar (16.4 ± 1.3 d).  相似文献   

18.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

19.
Encarsia sophia (Girault and Dodd) is an autoparasitoid in the hymenopteran family Aphelinidae. The females develop as primary parasitoids on whitefly nymphs (primary hosts), whereas the males develop as hyperparasitoids on their own species or on other primary parasitoid species (secondary hosts). The autoparasitoids not only parasitise whiteflies but also kill them with strong host-feeding capacity. In this study, female and male E. sophia were reared on the primary hosts Trialeurodes vaporariorum and Bemisia tabaci ‘Q’, and the host-feeding and parasitism of wasps on both whitefly species were determined for the four possible different mating combinations: (i) E. sophia females reared on B. tabaci (ESF-BT) mated with E. sophia males from B. tabaci (ESM-BT), (ii) E. sophia females reared on T. vaporariorum (ESF-TV) mated with E. sophia males from T. vaporariorum (ESM-TV), (iii) ESF-BT mated with ESM-TV, and (iv) ESF-TV mated with ESM-BT. ESF-TV mated with ESM-TV killed the largest percentage of whitefly nymphs through host feeding. The ESF-TV with larger body size mating with larger ESM-TV killed more whitefly nymphs through host feeding than those mating with smaller ESM-BT. Whether B. tabaci or T. vaporariorum were used as hosts, ESF-TV mated with ESM-TV and ESM-BT and ESF-BT mated with ESM-BT significantly parasitised more whitefly nymphs than ESF-BT mated with ESM-TV. In general, ESF-BT mated with ESM-TV killed significantly fewer whitefly nymphs through parasitism and host feeding than the other three mating combinations on both whitefly species. These results indicated that the performance of autoparasitoids on insect pests was not only dependent on females but was also affected by mating with males from different primary host species.  相似文献   

20.
Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption by 5th instar nymphs and adults of O. majusculus offered unparasitised 3rd, early 4th or 4th instar B. tabaci nymphs or parasitised nymphs containing 2nd or 3rd larval instar or pupal parasitoids. In addition, prey preference of the two stages of O. majusculus for parasitised or unparasitised whitefly nymphs was studied using nine different prey combinations. Both predator stages readily preyed upon on both unparasitised and parasitised B. tabaci. In no-choice experiments, predation on 3rd instar E. formosa by adult predators was the highest, while predator nymphs preyed most on unparasitised 3rd instar B. tabaci and 2nd instar parasitoids. Predation of predator stages was lowest on 4th instar B. tabaci and E. formosa pupae. In all prey combinations, both stages of O. majusculus showed a significant preference for parasitised over unparasitised whitefly nymphs except for the combination of 5th instars of O. majusculus with early 4th instar whiteflies and E. formosa pupae. The results indicate that intraguild interactions between O. majusculus and E. formosa may have negative effects on biological control of B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号