首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent-FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50-80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.  相似文献   

2.

Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.

  相似文献   

3.
Lactate and ammonia accumulation is a major factor limiting the performance of fed‐batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by‐products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine‐free fed‐batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2‐overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed‐batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine‐free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5‐fold increase in IFNα2b titer in comparison to the control glutamine‐supplied fed‐batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC‐MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high‐quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:494–504, 2018  相似文献   

4.

Background  

A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner.  相似文献   

5.
Ammonia removal using hepatoma cells in mammalian cell cultures   总被引:1,自引:0,他引:1  
It was examined whether hepatocyte cell lines can be used for ammonia removal in mammalian cell cultures. It was found that there exists a critical ammonium concentration level for each hepatocyte cell to remove ammonia. Among the cells tested in this work, primary hepatocytes showed the strongest ammonia removal capability if ammonium concentration is higher than the critical level. However, primary hepatocytes lost the liver function gradually and finally died after 2-3 weeks. Because of this limitation, primary hepatocytes were not appropriate to be used for ammonia removal in long-term cultures. Hep G2 cells, which are immortal, also showed a strong ammonia removal activity. The ammonia removal activity of Hep G2 cells depended on the concentration of ammonium in the medium, as in the case of primary hepatocytes. However, urea could not be detected in the course of ammonia removal by Hep G2 cells. Instead of urea, Hep G2 cells secreted glutamine into the culture medium. The capacity for ammonia removal was higher in the absence than in the presence of glutamine. Thus we checked the activity of glutamine synthetase in the Hep G2 cells. The level of glutamine synthetase activity increased with the addition of ammonium chloride. This result accounts for the ammonium concentration dependency of Hep G2 cells in ammonia removal and glutamine synthesis. Furthermore Hep G2 cells could grow well in the absence of glutamine, which was necessarily required in mammalian cell cultures. These results prove that glutamine formation serves as the primary mechanism of detoxifying ammonia in hepatocyte cell lines as expected. In addition, it was demonstrated that ammonium level could be reduced 38% and that erythropoietin production increased 2-fold in the mixed culture of Hep G2 and recombinant CHO cells.  相似文献   

6.
7.
Lambda phages have considerable potential as gene delivery vehicles due to their genetic tractability, low cost, safety and physical characteristics in comparison to other nanocarriers and gene porters. Little is known concerning lambda phage-mediated gene transfer and expression in mammalian hosts. We therefore performed experiments to evaluate lambda-ZAP bacteriophage-mediated gene transfer and expression in vitro. For this purpose, we constructed recombinant λ-phage nanobioparticles containing a mammalian expression cassette encoding enhanced green fluorescent protein (EGFP) and E7 gene of human papillomavirus type 16 (λ-HPV-16 E7) using Lambda ZAP- CMV XR vector. Four cell lines (COS-7, CHO, TC-1 and HEK-239) were transduced with the nanobioparticles. We also characterized the therapeutic anti-tumor effects of the recombinant λ-HPV-16 E7 phage in C57BL/6 tumor mice model as a cancer vaccine. Obtained results showed that delivery and expression of these genes in fibroblastic cells (COS-7 and CHO) are more efficient than epithelial cells (TC-1 and HEK-239) using these nanobioparticles. Despite the same phage M.O.I entry, the internalizing titers of COS-7 and CHO cells were more than TC-1 and HEK-293 cells, respectively. Mice vaccinated with λ-HPV-16 E7 are able to generate potent therapeutic antitumor effects against challenge with E7- expressing tumor cell line, TC-1 compared to group treated with the wild phage. The results demonstrated that the recombinant λ-phages, due to their capabilities in transducing mammalian cells, can also be considered in design and construction of novel and safe phage-based nanomedicines.  相似文献   

8.
9.
减少乳酸积累一直是哺乳动物细胞生物技术产业的一个目标。体外培养动物细胞时,乳酸积累主要是2种代谢途径作用的综合结果:一方面,葡萄糖在乳酸脱氢酶A(lactate dehydrogenase A,LDHA)的作用下生成乳酸;另一方面,乳酸可通过乳酸脱氢酶B(LDHB)或乳酸脱氢酶C(LDHC)氧化为丙酮酸重新进入三羧酸循环。本研究综合评估了乳酸代谢关键基因调控对人胚胎肾细胞(human embryonic kidney 293 cells,HEK-293)细胞生长、代谢和人腺病毒(human adenovirus,HAdV)生产的影响,有效提高了HEK-293细胞的HAdV生产能力,并为哺乳动物细胞的乳酸代谢工程调控提供了理论基础。通过改造乳酸代谢关键调控基因(敲除ldha基因以及过表达ldhb和ldhc基因),有效改善了HEK-293细胞的物质和能量代谢效率,显著提高了HAdV的生产。与对照细胞相比,3个基因改造均能促进细胞生长,降低乳酸和氨的积累,明显增强细胞的物质和能量代谢效率,显著提高了HEK-293细胞的HAdV生产能力。ldhc基因过表达对HEK-293细胞的生长、代谢和HAdV生产调控最显著,最大细胞密度提高了约38.7%,乳酸对葡萄糖得率和氨对谷氨酰胺得率分别下降了33.8%和63.3%,HAdV滴度提高了至少16倍。此外,相比于对照细胞株,改造细胞株的腺苷三磷酸(adenosine triphosphate,ATP)生成速率、ATP/O_(2)比率、ATP与腺苷二磷酸(adenosine diphosphate,ADP)的比值以及还原型辅酶Ⅰ(nicotinamide adenine dinucleotide,NADH)含量均有不同程度的提高,能量代谢效率明显改善。  相似文献   

10.
11.
Uniform stable-isotope labeling of mammalian cells is achieved via a novel formulation of a serum-free cell culture medium that is based on stable-isotope-labeled autolysates and lipid extracts of various microbiological origin. Yeast autolysates allow complete replacement of individual amino acids and organic acids in a chemically defined medium (DMEM/F12), enabling a cost-effective formulation of a stable-isotope-labeled culture medium for mammalian cells. In addition, biomass-derived hydrolysates, autolysates, and lipid extracts of various classes of algae were explored as cell culture components, both separately and in combination with yeast autolysates. Optimal autolysate concentrations were established. Such novel medium formulations were tested on mammalian cell lines, often used for recombinant protein production, i.e., Chinese hamster ovary (CHO) and human embryonic kidney (HEK 293). Special attention was paid to the adaptation of these mammalian cell lines to serum-free media. Formulation of the novel proprietary cell culture medium PLIm, based on yeastolates instead of individual amino acids and organic acids, allows a four- to eightfold cost reduction for 15N and 13C,15N stable-isotope-labeling, respectively, in CHO cells and a three- to sixfold cost reduction in HEK 293 cells. A high level of stable-isotope enrichment of mammalian cells (>90%) was achieved within four passages by complete replacement of carbon and nitrogen sources in the medium with their stable-isotope-labeled analogs. These conditions can be used to more cost-effectively produce labeled recombinant proteins in mammalian cells.  相似文献   

12.
The effect of hyperosmolarity on transient recombinant protein production in Chinese hamster ovary (CHO) cells was investigated. Addition of 90 mM NaCl to the production medium ProCHO5 increased the volumetric yield of recombinant antibody up to 4-fold relative to transfection in ProCHO5 alone. Volumetric yields up to 50 mg l−1 were achieved in a 6 day batch culture of 3 l. In addition, hyperosmolarity reduced cell growth and increased cell size. The addition of salt to cultures of transiently transfected CHO cells is a simple and cost-effective method to increase TGE yields in this host.  相似文献   

13.
A Chinese hamster ovary (CHO) cell line, producing recombinant secreted human placental alkaline phosphatase (SEAP) was investigated under three different culture conditions (suspension cells, cells attached to Cytodex 3 and Cytopore 1 microcarriers) in a biphasic culture mode using a temperature shift to mild hypothermic conditions (33 °C) in a fed-batch bioreactor. The cell viability in both the suspension and the Cytodex 3 cultures was maintained for significantly longer periods under hypothermic conditions than in the single-temperature cultures, leading to higher integrated viable cell densities. For all culture conditions, the specific productivity of SEAP increased after the temperature reduction; the specific productivities of the microcarrier cultures increased approximately threefold while the specific productivity of the suspension culture increased nearly eightfold. The glucose and glutamine consumption rates and lactate and ammonia production rates were significantly lowered after the temperature reduction, as were the yields of lactate from glucose. However, the yield of ammonia from glutamine increased in response to the temperature shift.  相似文献   

14.
Effects of biochemical factors, i.e., medium components and metabolic byproducts, on growth of Chinese hamster ovary (CHO) cells were investigated. Glucose and ammonia were found to inhibit the growth. Kinetic analysis gave the inhibition constants, 0.14 g l-1 for ammonia and 5.0 g l-1 for glucose. Since glutamine was unstable and was a main source of ammonia, precise studies on glutamine degradation and ammonia formation process were done. By evaluating the spontaneous reactions, net glutamine utilization and net ammonia production by the cells could be estimated. It became evident that asparagine could support the growth of CHO cells as a stable substitute for glutamine. Then, a glucose fed-batch culture was grown on a glutamine free and asparagine supplemented medium. Because of (1) low glucose concentration, but (2) no glucose limitation and (3) low ammonia accumulation, the maximum total cell concentration reached 3.4 x 10(6) ml-1, which was 1.8 times greater than that in the control experiment (initial 1.15 g l-1 glucose and 0.29 g l-1 glutamine, and no glucose feed).  相似文献   

15.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

16.
17.
Recombinant proteins are of great commercial and scientific interest. Yet, most production methods in mammalian cells involve the time- and labor-consuming step of creating stable cell lines. Production methods based on transient gene expression are advantageous in terms of speed and versatility; yet, depending on the transfection protocol, transient transfection faces some bottlenecks such as a priori complex formation, limitations in terms of transfection and production media used and the need for medium exchange prior to and/or after transfection. Published protocols for transfection of suspension-adapted HEK-293 cells with polyethyleneimine have shown great promise in overcoming some of these bottlenecks, but still require a priori complex formation for optimal yields and limit the choice of transfection and production media. Here, we report successful in situ transfection of suspension-adapted HEK-293 cells with 25-kDa linear polyethyleneimine at densities up to 20 x 10(6) cells/mL in complex media followed by production at lower cell densities (1 x 10(6) cells/mL). After concentrating cells to such high densities, transfection of HEK-293 cells becomes possible in most commonly used media and is not restricted to a specific medium. Furthermore, there is no need to make transfection complexes a priori, a step that prevents inline sterile filtration of the DNA bulk for transfection, an important consideration when scaling processes up to 100 or 1,000 L. Finally, transfecting HEK-293 cells at high density in complex media is superior to existing transfection protocols and doubles yields of recombinant protein obtainable by transient gene expression.  相似文献   

18.
Protein synthesis in mammalian cells can be observed in two strikingly different patterns: 1) production of monoclonal antibodies in hybridoma cultures is typically inverse growth associated and 2) production of most therapeutic glycoproteins in recombinant mammalian cell cultures is found to be growth associated. Production of monoclonal antibodies has been easily maximized by culturing hybridoma cells at very low growth rates in high cell density fed- batch or perfusion bioreactors. Applying the same bioreactor techniques to recombinant mammalian cell cultures results in drastically reduced production rates due to their growth associated production kinetics. Optimization of such growth associated production requires high cell growth conditions, such as in repeated batch cultures or chemostat cultures with attendant excess biomass synthesis. Our recent research has demonstrated that this growth associated production in recombinant Chinese hamster ovary (CHO) cells is related to the S (DNA synthesis)-phase specific production due to the SV40 early promoter commonly used for driving the foreign gene expression. Using the stably transfected CHO cell lines synthesizing an intracellular reporter protein under the control of SV40 early promoter, we have recently demonstrated in batch and continuous cultures that the product synthesis is growth associated. We have now replaced this S-phase specific promoter in new expression vectors with the adenovirus major late promoter which was found to be active primarily in the G1-phase and is expected to yield the desirable inverse growth associated production behavior. Our results in repeated batch cultures show that the protein synthesis kinetics in this resulting CHO cell line is indeed inverse growth associated. Results from continuous and high cell density perfusion culture experiments also indicate a strong inverse growth associated protein synthesis. The bioreactor optimization with this desirable inverse growth associated production behavior would be much simpler than bioreactor operation for cells with growth associated production. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Transient gene expression (TGE) provides a method for quickly delivering protein for research using mammalian cells. While high levels of recombinant proteins have been produced in TGE experiments in HEK 293 cells, TGE efforts in the commercially prominent CHO cell line still suffer from inadequate protein yields. Here, we describe a cell-engineering strategy to improve transient production of proteins using CHO cells. CHO-DG44 cells were engineered to overexpress the anti-apoptotic protein Bcl-x(L) and transiently transfected using polyethylenimine (PEI) in serum-free media. Pools and cell lines stably expressing Bcl-x(L) showed enhanced viable cell density and increased production of a glycosylated, therapeutic fusion protein in shake flask TGE studies. The improved cell lines showed fusion protein production levels ranging from 12.6 to 27.0 mg/L in the supernatant compared to the control cultures which produced 6.3-7.3 mg/L, representing a 70-270% increase in yield after 14 days of fed-batch culture. All Bcl-xL-expressing cell lines also exhibited an increase in specific productivity during the first 8 days of culture. In addition to increased production, Bcl-x(L) cell lines maintained viabilities above 90% and less apoptosis compared to the DG44 host which had viabilities below 60% after 14 days. Product quality was comparable between a Bcl-xL-engineered cell line and the CHO host. The work presented here provides the foundation for using anti-apoptosis engineered CHO cell lines for increased production of therapeutic proteins in TGE applications.  相似文献   

20.
Recombinant protein expression in bacteria, typically E. coli, has been the most successful strategy for milligram quantity expression of proteins. However, prokaryotic hosts are often not as appropriate for expression of human, viral or eukaryotic proteins due to toxicity of the foreign macromolecule, differences in the protein folding machinery, or due to the lack of particular co- or post-translational modifications in bacteria. Expression systems based on yeast (P. pastoris or S. cerevisiae) 1,2, baculovirus-infected insect (S. frugiperda or T. ni) cells 3, and cell-free in vitro translation systems 2,4 have been successfully used to produce mammalian proteins. Intuitively, the best match is to use a mammalian host to ensure the production of recombinant proteins that contain the proper post-translational modifications. A number of mammalian cell lines (Human Embryonic Kidney (HEK) 293, CV-1 cells in Origin carrying the SV40 larget T-antigen (COS), Chinese Hamster Ovary (CHO), and others) have been successfully utilized to overexpress milligram quantities of a number of human proteins 5-9. However, the advantages of using mammalian cells are often countered by higher costs, requirement of specialized laboratory equipment, lower protein yields, and lengthy times to develop stable expression cell lines. Increasing yield and producing proteins faster, while keeping costs low, are major factors for many academic and commercial laboratories.Here, we describe a time- and cost-efficient, two-part procedure for the expression of secreted human proteins from adherent HEK 293T cells. This system is capable of producing microgram to milligram quantities of functional protein for structural, biophysical and biochemical studies. The first part, multiple constructs of the gene of interest are produced in parallel and transiently transfected into adherent HEK 293T cells in small scale. The detection and analysis of recombinant protein secreted into the cell culture medium is performed by western blot analysis using commercially available antibodies directed against a vector-encoded protein purification tag. Subsequently, suitable constructs for large-scale protein production are transiently transfected using polyethyleneimine (PEI) in 10-layer cell factories. Proteins secreted into litre-volumes of conditioned medium are concentrated into manageable amounts using tangential flow filtration, followed by purification by anti-HA affinity chromatography. The utility of this platform is proven by its ability to express milligram quantities of cytokines, cytokine receptors, cell surface receptors, intrinsic restriction factors, and viral glycoproteins. This method was also successfully used in the structural determination of the trimeric ebolavirus glycoprotein 5,10.In conclusion, this platform offers ease of use, speed and scalability while maximizing protein quality and functionality. Moreover, no additional equipment, other than a standard humidified CO2 incubator, is required. This procedure may be rapidly expanded to systems of greater complexity, such as co-expression of protein complexes, antigens and antibodies, production of virus-like particles for vaccines, or production of adenoviruses or lentiviruses for transduction of difficult cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号