首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Controversy has reigned for some time over the biological connection between DNA methylation and cancer. For this reason, the methylation mechanism responsible for increased cancer risk has received greater attention in recent years. Tumor suppressor genes are often hypermethylated resulting in gene silencing. Although some have questioned this interpretation of the link between methylation and cancer, it appears that both hypermethylation and hypomethylation events can create epigenetic changes that can contribute to cancer development. Recent studies have shown that the methyltransferases DNMT1 and DNMT3b cooperatively maintain DNA methylation and gene silencing in human cancer cells. Disruption of the human DNMT3b only slightly reduces the overall global DNA methylation; however, demethylation was markedly potentiated when both DNMT1 and DNMT3b were simultaneously deleted. The results to these experiments provide compelling evidence towards a role for DNA methylation in cancer. This review discusses the current understanding of cancer-epigenetic information and highlights recent studies that connect the methylation machinery and chromatin remodelling with cancer susceptibility.  相似文献   

2.
3.
4.
5.
DNA甲基化——肿瘤产生的一种表观遗传学机制   总被引:16,自引:4,他引:12  
张丽丽  吴建新 《遗传》2006,28(7):880-885
在人类基因组中,DNA甲基化是一种表观遗传修饰,它与肿瘤的发生关系密切。抑癌基因和DNA修复基因的高甲基化、重复序列DNA的低甲基化、某些印记基因的印记丢失与多种肿瘤的发生有关。目前研究发现,基因组中甲基化的水平不仅受DNA 甲基化转移酶(DNMT)的影响,还与组蛋白甲基化、叶酸摄入、RNA干扰等多种因素有关。DNA甲基化在基因转录过程中扮有重要角色,并与组蛋白修饰、染色质构型重塑共同参与转录调控。  相似文献   

6.
Real space flight and modeled microgravity conditions result in changes in the expression of genes that control important cellular functions. However, the mechanisms for microgravity‐induced gene expression changes are not clear. The epigenetic changes of DNA methylation and chromatin histones modifications are known to regulate gene expression. The objectives of this study were to investigate whether simulated microgravity alters (a) the DNA methylation and histone acetylation, and (b) the expression of DNMT1, DNMT3a, DNMT3b, and HDAC1 genes that regulate epigenetic events. To achieve these objectives, human T‐lymphocyte cells were grown in a rotary cell culture system (RCCS) that simulates microgravity, and in parallel under normal gravitational conditions as control. The microgravity‐induced DNA methylation changes were detected by methylation sensitive‐random amplified polymorphic DNA (MS‐RAPD) analysis of genomic DNA. The gene expression was measured by Quantitative Real‐time PCR. The expression of DNMT1, DNMT3a, and DNMT3b was found to be increased at 72 h, and decreased at 7 days in microgravity exposed cells. The MS‐RAPD analysis revealed that simulated microgravity exposure results in DNA hypomethylation and mutational changes. Gene expression analysis revealed microgravity exposure time‐dependent decreased expression of HDAC1. Decreased expression of HDAC1 should result in increased level of acetylated histone H3, however a decreased level of acetylated H3 was observed in microgravity condition, indicating thereby that other HDACs may be involved in regulation of H3 deacetylation. The findings of this study suggest that epigenetic events could be one of the mechanistic bases for microgravity‐induced gene expression changes and associated adverse health effects. J. Cell. Biochem. 111: 123–129, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
DNMT3 proteins are de novo DNA methyltransferases that are responsible for the establishment of DNA methylation patterns in mammalian genomes. Here, we have determined the crystal structures of the ATRX–DNMT3–DNMT3L (ADD) domain of DNMT3A in an unliganded form and in a complex with the amino‐terminal tail of histone H3. Combined with the results of biochemical analysis, the complex structure indicates that DNMT3A recognizes the unmethylated state of lysine 4 in histone H3. This finding indicates that the recruitment of DNMT3A onto chromatin, and thereby de novo DNA methylation, is mediated by recognition of the histone modification state by its ADD domain. Furthermore, our biochemical and nuclear magnetic resonance data show mutually exclusive binding of the ADD domain of DNMT3A and the chromodomain of heterochromatin protein 1α to the H3 tail. These results indicate that de novo DNA methylation by DNMT3A requires the alteration of chromatin structure.  相似文献   

8.
We conducted genome‐wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3‐binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3‐associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.  相似文献   

9.
DNA cytosine methylation is one of the major epigenetic gene silencing marks in the human genome facilitated by DNA methyltransferases. DNA cytosine-5 methyltransferase 1 (DNMT1) performs maintenance methylation in somatic cells. In cancer cells, DNMT1 is responsible for the aberrant hypermethylation of CpG islands and the silencing of tumor suppressor genes. Here we show that the catalytically active recombinant DNMT1, lacking 580 amino acids from the amino terminus, binds to unmethylated DNA with higher affinity than hemimethylated or methylated DNA. To further understand the binding domain of enzyme, we have used gel shift assay. We have demonstrated that the CXXC region (C is cysteine; X is any amino acid) of DNMT1 bound specifically to unmethylated CpG dinucleotides. Furthermore, mutation of the conserved cysteines abolished CXXC mediated DNA binding. In transfected COS-7 cells, CXXC deleted DNMT1 (DNMT1 (DeltaCXXC)) localized on replication foci. Both point mutant and DNMT1 (DeltaCXXC) enzyme displayed significant reduction in catalytic activity, confirming that this domain is crucial for enzymatic activity. A permanent cell line with DNMT1 (DeltaCXXC) displayed partial loss of genomic methylation on rDNA loci, despite the presence of endogenous wild-type enzyme. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity.  相似文献   

10.
DNA methylation is a major determinant of epigenetic inheritance. DNA methyltransferase 1 (DNMT1) is the enzyme responsible for the maintenance of DNA methylation patterns during cell division, and deregulated expression of DNMT1 leads to cellular transformation. We show herein that AU-rich element/poly(U)-binding/degradation factor 1 (AUF1)/heterogeneous nuclear ribonucleoprotein D interacts with an AU-rich conserved element in the 3' untranslated region of the DNMT1 mRNA and targets it for destabilization by the exosome. AUF1 protein levels are regulated by the cell cycle by the proteasome, resulting in cell cycle-specific destabilization of DNMT1 mRNA. AUF1 knock down leads to increased DNMT1 expression and modifications of cell cycle kinetics, increased DNA methyltransferase activity, and genome hypermethylation. Concurrent AUF1 and DNMT1 knock down abolishes this effect, suggesting that the effects of AUF1 knock down on the cell cycle are mediated at least in part by DNMT1. In this study, we demonstrate a link between AUF1, the RNA degradation machinery, and maintenance of the epigenetic integrity of the cell.  相似文献   

11.
DNA methylation plays a central role in the epigenetic regulation of gene expression in vertebrates. Genetic and biochemical data indicated that DNA methyltransferase 1 (Dnmt1) is indispensable for the maintenance of DNA methylation patterns in mice, but targeting of the DNMT1 locus in human HCT116 tumor cells had only minor effects on genomic methylation and cell viability. In this study, we identified an alternative splicing in these cells that bypasses the disrupting selective marker and results in a catalytically active DNMT1 protein lacking the proliferating cell nuclear antigen-binding domain required for association with the replication machinery. Using a mechanism-based trapping assay, we show that this truncated DNMT1 protein displays only twofold reduced postreplicative DNA methylation maintenance activity in vivo. RNA interference-mediated knockdown of this truncated DNMT1 results in global genomic hypomethylation and cell death. These results indicate that DNMT1 is essential in mouse and human cells, but direct coupling of the replication of genetic and epigenetic information is not strictly required.  相似文献   

12.
DNA methyltransferase 1 (DNMT1) is an important component of the epigenetic machinery and is responsible for copying DNA methylation patterns during cell division. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming. Knockdown of DNMT1 leads to inhibition of DNA replication, but the mechanism has been unclear. Here we show that depletion of DNMT1 with either antisense or small interfering RNA (siRNA) specific to DNMT1 activates a cascade of genotoxic stress checkpoint proteins, resulting in phosphorylation of checkpoint kinases 1 and 2 (Chk1 and -2), gammaH2AX focus formation, and cell division control protein 25a (CDC25a) degradation, in an ataxia telangiectasia mutated-Rad3-related (ATR)-dependent manner. siRNA knockdown of ATR blocks the response to DNMT1 depletion; DNA synthesis continues in the absence of DNMT1, resulting in global hypomethylation. Similarly, the response to DNMT1 knockdown is significantly attenuated in human mutant ATR fibroblast cells from a Seckel syndrome patient. This response is sensitive to DNMT1 depletion, independent of the catalytic domain of DNMT1, as indicated by abolition of the response with ectopic expression of either DNMT1 or DNMT1 with the catalytic domain deleted. There is no response to short-term treatment with 5-aza-deoxycytidine (5-aza-CdR), which causes demethylation by trapping DNMT1 in 5-aza-CdR-containing DNA but does not cause disappearance of DNMT1 from the nucleus. Our data are consistent with the hypothesis that removal of DNMT1 from replication forks is the trigger for this response.  相似文献   

13.
14.
15.
DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for mammalian development and maintenance of DNA methylation following DNA replication in cells. The DNA methylation process generates S-adenosyl-l-homocysteine, a strong inhibitor of DNMT1. Here we report that S-adenosylhomocysteine hydrolase (SAHH/AHCY), the only mammalian enzyme capable of hydrolyzing S-adenosyl-l-homocysteine binds to DNMT1 during DNA replication. SAHH enhances DNMT1 activity in vitro, and its overexpression in mammalian cells led to hypermethylation of the genome, whereas its inhibition by adenosine periodate or siRNA-mediated knockdown resulted in hypomethylation of the genome. Hypermethylation was consistent in both gene bodies and repetitive DNA elements leading to aberrant gene regulation. Cells overexpressing SAHH specifically up-regulated metabolic pathway genes and down-regulated PPAR and MAPK signaling pathways genes. Therefore, we suggest that alteration of SAHH level affects global DNA methylation levels and gene expression.  相似文献   

16.
17.
DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis‐specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1‐deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.  相似文献   

18.
BackgroundOne of the most important recent findings in cancer genomics is the identification of novel driver mutations which often target genes that regulate genome-wide chromatin and DNA methylation marks. Little is known, however, as to whether these genes exhibit patterns of epigenomic deregulation that transcend cancer types.ResultsHere we conduct an integrative pan-cancer-wide analysis of matched RNA-Seq and DNA methylation data across ten different cancer types. We identify seven tumor suppressor and eleven oncogenic epigenetic enzymes which display patterns of deregulation and association with genome-wide cancer DNA methylation patterns, which are largely independent of cancer type. In doing so, we provide evidence that genome-wide cancer hyper- and hypo- DNA methylation patterns are independent processes, controlled by distinct sets of epigenetic enzyme genes. Using causal network modeling, we predict a number of candidate drivers of cancer DNA hypermethylation and hypomethylation. Finally, we show that the genomic loci whose DNA methylation levels associate most strongly with expression of these putative drivers are highly consistent across cancer types.ConclusionsThis study demonstrates that there exist universal patterns of epigenomic deregulation that transcend cancer types, and that intra-tumor levels of genome-wide DNA hypomethylation and hypermethylation are controlled by distinct processes.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0699-9) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号