首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Aim Boreal forest bird species appear to be divided into lineages endemic to each northern continent, in contrast to Holarctic species living in open habitats. For example, the three-toed woodpecker (Picoides tridactylus) and the winter wren (Troglodytes troglodytes) have divergent Nearctic and Palaearctic mitochondrial DNA clades. Furthermore, in these species, the next closest relative of the Nearctic/Palaearctic sister lineages is the Nearctic clade, suggesting that the Palaearctic may have been colonized from the Nearctic. The aim of this study is to test this pattern of intercontinental divergence and colonization in another Holarctic boreal forest resident – the pine grosbeak (Pinicola enucleator). Location The Holarctic. Methods We sequenced the mitochondrial ND2 gene and Z-specific intron 9 of the ACO1 gene for 74 pine grosbeaks collected across the Holarctic. The sequences were used to reconstruct the phylogeographical history of this species using maximum likelihood analysis. Results We discovered two distinct mitochondrial and Z-specific lineages in the Nearctic and one in the Palaearctic. The two Nearctic mtDNA lineages, one in the northern boreal forest and one in south-western mountain forest, were more closely related to each other than either was to the Palaearctic clade. Two Nearctic Z-chromosome clades were sympatric in the boreal and south-western mountain forests. Unlike the topology of the mtDNA tree, the relationship among the Z-chromosome clades was the same as in the three-toed woodpecker and winter wren [Nearctic (Nearctic, Palaearctic)]. The Palaearctic Z-chromosome clade had much lower genetic diversity and a single-peak mismatch distribution with a mean < 25% of that for either Nearctic region, both of which had ragged mismatch distributions. Main conclusions Our data suggest that, similar to the other boreal forest species, the pine grosbeak has divergent lineages in each northern continent and could have colonized the Palaearctic from the Nearctic. Compared with many Holarctic birds inhabiting open habitats, boreal forest species appear to be more differentiated, possibly because the boreal forests of the Nearctic and Palaearctic have been isolated since the Pliocene (3.5 Ma).  相似文献   

2.
We compared foraging behavior of foliage-gleaning birds of the boreal forest of two Palaearctic (central Siberia and European Russia) and two Nearctic (Mackenzie and Ontario, Canada) sites. Using discriminant function analysis on paired sites we were able to distinguish foliage-gleaning species from the Nearctic and Palaearctic with few misclassifications. The two variables that most consistently distinguished species of the two avifaunas were the percentage use of conifer foliage and the percentage use of all foliage. Nearctic foliage-gleaner assemblages had more species that foraged predominantly from coniferous foliage and displayed a greater tendency to forage from foliage, both coniferous and broad-leafed, rather than twigs, branches, or other substrates. The greater specialization on foliage and, in particular, conifer foliage by New World canopy foliage insectivores is consistent with previously proposed hypotheses regarding the role of Pleistocene vegetation history on ecological generalization of Eurasian species. Boreal forest, composed primarily of spruce and pine, was widespread in eastern North America, whereas pockets of forest were scattered in Eurasia (mostly the mountains of southern Europe and Asia). This may have affected the populations of birds directly or indirectly through reduction in the diversity and abundance of defoliating outbreak insects. Loss of habitat and resources may have selected against ecological specialization on these habitats and resources. Received: 11 May 1998 / Accepted: 24 June 1999  相似文献   

3.
Aim Changing conditions across spatial gradients are primary determinants of biotic regions, local habitats, and distributional edges. We investigate how a climatic gradient and edaphic mosaic interact as multi‐scale drivers of spatial patterns in scarabaeine dung beetles. The patterns are tested for congruency with ecoregion and floral boundaries over the same gradient, as responses to physical factors often differ among higher taxa. Location Southern Africa and the Nama Karoo–Kalahari ecotone, Northern Cape, South Africa. Methods Data consisted of the climatic distributions of 104 species and their abundances at 223 sites in two ecoregions/floral biomes, four bioregions, and 13 vegetation units. Factor analyses determined the biogeographical composition of the species, and regional‐ to local‐scale patterns in species abundance structure. Hierarchical analysis of oblique factors determined the proportional contribution of spatial variance to patterns. One‐way anova was used to test for significant separation of patterns along factor axes. Stepwise multiple regression was used to determine correlations of five physical attributes with species richness, Shannon‐Wiener diversity, and factor loadings for the study sites. Results Four biogeographical influences overlap in the study region, although rank contribution declines from south‐west arid through north‐east savanna to widespread and south‐east highland taxa. Species abundance structure comprises five subregional patterns, two centred to the north‐east (Kalahari, Isolated Kalahari Dune) dominated by Kalahari influence, and three to the south‐west (Nama Karoo subdivisions: Bushmanland, ‘Upper’, ‘Stony Prieska’) dominated by south‐west arid influence. Kalahari deep sands are characterized especially by a warmer, moister climate, whereas the Nama Karoo mosaic of deep or stony soils is characterized especially by north‐west aridity (Bushmanland), south‐east cooler temperatures (‘Upper’), or excessively stony soils (‘Stony Prieska’). Four of the subregional patterns each comprised three localized patterns related primarily to relative stoniness, edge effects from geographical position, or incidence of rainfall. Species richness and diversity declined with decreasing rainfall and increasing stoniness. Main conclusions Climatic and edaphic factors are important multi‐scale determinants of spatial patterns in dung beetle assemblage structure, with edaphic factors becoming more important at local spatial scales. The patterns are roughly congruent with the Kalahari Savanna–Nama Karoo ecotone at the floral biome or ecoregion scale, but show limited coincidence with finer‐scale floral classification.  相似文献   

4.
Aim We compared vegetation patterns at high elevation on a tropical mountain with edaphic properties and position along climate gradients to examine this landscape’s potential sensitivity to climate change. Location Our study covers the cloud forest, the ecotone at the cloud forest’s upper limit, and the alpine grassland, on the north‐east corner of windward Haleakalā, Hawai‘i. The study area brackets the mean trade wind inversion (TWI), encompasses a perpendicular, east–west precipitation gradient and includes multiple edaphic contexts. Methods We collected vegetation structure and composition data in 134 plots from 1900 to 2400 m elevation, stratified east to west. We used classification trees to compare species assemblage groups with spatial (elevation, easting, aspect) and edaphic (substrate age, texture, degree slope) variables derived from a 10‐m digital elevation model and a digital geological map. Results The forest line was physiognomically sharp, and a Shipley–Keddy test showed that species distributional limits were aggregated there. Forest line elevation was not consistent, but dropped nearly 200 m from east to west. Indicator taxa for positions above or below the forest line varied from east to west. Hierarchical clustering identified species assemblage groups with significantly different composition that were distributed across the TWI and/or along east–west climate gradients. Classification trees showed that edaphic properties were not well associated with species assemblage groups, but position along two perpendicular climate gradients was. Compositional turnover was detected along both elevational and east–west gradients. Turnover of the cloud forest’s epiphytic community was particularly pronounced across east–west gradients. Lichen abundance was significantly higher at the drier end of the east–west moisture gradient, and bryophyte abundance was higher at the wetter end. Main conclusions Modern spatial patterns suggest that this landscape will respond to changes in moisture balance through changes in species assemblage and structure, especially at the ecotone. Furthermore, ecotone response to climate change may vary from east to west because of differences in species‐specific constraints or climatic context.  相似文献   

5.
Aim  Although the breeding ranges of most Western Palaearctic migratory passerines are well documented in Europe, their overwintering ranges and patterns of species richness in Africa remain poorly understood. To illustrate potential patterns of species richness despite severely limited data, we extrapolated species ranges from a new and unique data bank of locality records that documents overwintering locations of these birds in Africa.
Location  Sub-Saharan Africa.
Methods  We predicted potential geographical distributions of 60 species of passerine birds based on overwintering records using bioclimatic models. We then combined these predictions to estimate potential species richness and explored response shapes using spatial linear regression. We also evaluated the evidence for a mid-domain effect using a one-dimensional null model.
Results  Spatial linear regression analyses of the species richness pattern revealed non-linear relationships to seasonality in precipitation, minimum net primary productivity, minimum average temperature, habitat heterogeneity, percentage of tree cover, distance from the Sahara Desert and inter-annual variability in net primary productivity. The explanatory power of these variables decreased with geographic range size. The one-dimensional null model of species richness based on distance from the Sahara Desert did not show evidence of a mid-domain effect.
Main conclusions  Distributions of migrants seem generally strongly determined by distance from the Sahara Desert working in concert with climatic effects, but this cannot adequately explain richness patterns of species with small ranges in Africa, many of which are of substantial conservation concern.  相似文献   

6.
Species richness in mammalian herbivores: patterns in the boreal zone   总被引:1,自引:0,他引:1  
Latitudinal gradients in species diversity are well established for a number of plant and animal taxa. Both historical and present-day environmental factors have been suggested to be responsible for observed patterns. We tested the hypothesis that current environmental features of the environment (primary productivity and regional landscape structure) may explain the longitudinal variation in species richness of mammalian herbivores in the Holarctic boreal zone. Mammalian herbivore species diversity was strongly correlated with a number of environmental variables measured. We reduced the data set by a principal components analysis (PCA), and found that in the Palearctic, species richness is positively related to warm climate (high temperature sum), the number of hardwood species, and the area of boreal forest. In the Nearctic, species richness increases as the length of the growing season and the number of coniferous tree species increase. Thus indirect measures of primary productivity as well as tree species number may accurately predict species richness in mammalian herbivores. In addition, there seems to be a strong species-area effect at the regional level. The larger and more homogeneous in terms of forest coverage a boreal section is, the more species coexist there.  相似文献   

7.
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic–climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west‐to‐east) across the Pacific‐North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041–2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east–west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns.  相似文献   

8.
Patterns of habitat choice in ecological communities are not only influenced by present-day selective forces but also by historical processes, such as the biogeographical history of the lineages they are composed of. Nevertheless, it has been very difficult to test historical factors. The possible tropical origin of long-distance migratory birds provides an opportunity for such a test. If habitat choice of long-distance migrants is inherited from their tropical ancestors then Nearctic long-distance migrants might have acquired their habitat choice from Neotropical forest species and European long-distance migrants from African savannah species. Here we use a macroecological approach to show that this hypothesis can be confirmed. Long-distance migrants in the Nearctic are found in forested habitat types, while those in Europe are found in open ones. In comparison, the habitat choice of residents and short-distance migrants (in genera without long-distance migration) does not differ between the Nearctic and Europe. These results demonstrate that habitat choice in temperate bird communities can be explained by the tropical history of long-distance migrants. Thus, habitat choice seems to be shaped not only by local mechanisms, but also by processes acting on much larger spatial and temporal scales.  相似文献   

9.
Spatial autocorrelation and red herrings in geographical ecology   总被引:14,自引:1,他引:13  
Aim Spatial autocorrelation in ecological data can inflate Type I errors in statistical analyses. There has also been a recent claim that spatial autocorrelation generates ‘red herrings’, such that virtually all past analyses are flawed. We consider the origins of this phenomenon, the implications of spatial autocorrelation for macro‐scale patterns of species diversity and set out a clarification of the statistical problems generated by its presence. Location To illustrate the issues involved, we analyse the species richness of the birds of western/central Europe, north Africa and the Middle East. Methods Spatial correlograms for richness and five environmental variables were generated using Moran's I coefficients. Multiple regression, using both ordinary least‐squares (OLS) and generalized least squares (GLS) assuming a spatial structure in the residuals, were used to identify the strongest predictors of richness. Autocorrelation analyses of the residuals obtained after stepwise OLS regression were undertaken, and the ranks of variables in the full OLS and GLS models were compared. Results Bird richness is characterized by a quadratic north–south gradient. Spatial correlograms usually had positive autocorrelation up to c. 1600 km. Including the environmental variables successively in the OLS model reduced spatial autocorrelation in the residuals to non‐detectable levels, indicating that the variables explained all spatial structure in the data. In principle, if residuals are not autocorrelated then OLS is a special case of GLS. However, our comparison between OLS and GLS models including all environmental variables revealed that GLS de‐emphasized predictors with strong autocorrelation and long‐distance clinal structures, giving more importance to variables acting at smaller geographical scales. Conclusion Although spatial autocorrelation should always be investigated, it does not necessarily generate bias. Rather, it can be a useful tool to investigate mechanisms operating on richness at different spatial scales. Claims that analyses that do not take into account spatial autocorrelation are flawed are without foundation.  相似文献   

10.
M. MÖNKKONEN  P. HELLE  D. WELSH 《Ibis》1992,134(S1):7-13
In this paper we compare ecological attributes of tropical migrant passerines from the Nearctic and western Palaearctic, focusing particularly on habitat association patterns during both breeding and wintering seasons. Three regions were compared: Europe, western and eastern North America. Breeding bird census data from 32 studies (each including at least four stages of forest succession) were used to assess the association patterns of breeding habitats among tropical migrants. For each species we calculated an index of habitat diversity and habitat preference.
Tropical migrants preferred earlier successional stages than other birds in Europe. The opposite was true in eastern North America. In eastern North America, tropical migrants tended to be associated with a smaller range of serai stages than other passerine species. In their winter quarters, Palaearctic migrants live primarily in open habitats, such as savannas, whereas eastern Nearctic migrants make more frequent use of evergreen forests. Migrants from western North America show the greatest match between breeding and wintering habitats.
We relate the results to the taxonomy and probable history of contemporary avifaunas and vegetation formations of the Old and New World. Taxonomically, tropical migrants from different parts of the Holarctic are less closely related to each other than residents and short-distance migrants. Tropical and temperate avifaunas are more closely related to each other in the New World than in the Old World. Conservation implications of the between-continent differences are briefly discussed.  相似文献   

11.
Aim To test the ‘more individuals hypothesis’ as a mechanism for the positive association between energy availability and species richness. This hypothesis predicts that total density and energy use in communities is linearly related to energy availability, and that species richness is a positive function of increased density. We also evaluate whether similar energy–density patterns apply to different migratory groups (residents, short‐distance migrants and tropical migrants) separately. Location European and North American forest bird communities. Methods We collected published breeding bird census data from Europe and North America (n = 187). From each census data we calculated bird density (pairs 10 ha?1), energy use by the community (the sum of metabolic needs of individuals, Watts 10 ha?1) and geographical location with an accuracy of 0.5°. For each bird census data coordinate we extracted the corresponding monthly values of actual evapotranspiration (AET). From these values we calculated corresponding AET values that we expected to explain the density energy use of forest birds: total annual, breeding season (June) and winter AET. We used general linear modelling to analyse these data controlling for the area of census plots, forest type and census method. Results Total density and energy use in European and North American forest bird communities were linear functions of annual productivity, and increased density and energy use then translated into more species. Also resident bird density and energy consumption were positive functions of annual productivity, but the relationship between productivity and density as well as between productivity and energy use was weaker for migrants. Main conclusions Our results are consistent with the more individuals hypothesis that density and energy use in breeding forest bird communities is coupled tightly with the productivity of the environment, and that increased density and energy consumption results in more species. However, not all community members (migratory groups) are limited by productivity on the breeding grounds.  相似文献   

12.
Climate suitability and management of the gypsy moth invasion into Canada   总被引:1,自引:0,他引:1  
The gypsy moth has become established throughout southern Canada east of Lake Superior where the climate is suitable for the completion of its univoltine life cycle. The spread of the gypsy moth to the north and west in Canada has so far been prevented by climatic barriers and host plant availability as well as by aggressive eradication of incipient populations. Climate change is expected to increase the area of climatic suitability and result in greater overlap with susceptible forest types throughout Canada, especially in the west. At the same time, the gypsy moth is spreading west in the USA into states bordering western Canadian provinces. These circumstances all lead to a greatly increased risk of further invasion into Canadian forests by the gypsy moth. Management actions need to be intensified in different ways in different parts of the country to reduce the impacts of spread in eastern Canada and to prevent the gypsy moth from invading western regions.  相似文献   

13.
Aim  To forecast the responses of alpine flora to the expected upward shift of treeline ecotones due to climatic warming, we investigated species richness patterns of vascular plants at small spatial scales across elevational transects.
Location  Richness patterns were assessed at local scales along the elevational gradient in two undisturbed treeline ecotones and one disturbed treeline ecotone in the Spanish Pyrenees.
Methods  We placed a rectangular plot (0.3–0.4 ha) in each treeline ecotone. We estimated and described the spatial patterns of plant richness using the point method and Moran's I correlograms. We delineated boundaries based on plant richness and tree cover using moving split windows and wavelet analysis. Then, to determine if floristic and tree cover boundaries were spatially related, overlap statistics were used.
Results  Plant richness increased above the forest limit and was negatively related to tree cover in the undisturbed sites. The mean size of richness patches in one of these sites was 10–15 m. Moving split windows and wavelets detected the sharpest changes in plant richness above the forest limit at both undisturbed sites. Most tree cover and plant richness boundaries were not spatially related.
Main conclusions  The upslope decrease of tree cover may explain the increase of plant richness across alpine treeline ecotones. However, the detection of abrupt richness boundaries well above the forest limit indicates the importance of local environmental heterogeneity to explain the patterns of plant richness at smaller scales. We found highly diverse microsites dominated by alpine species above the forest limit, which should be monitored to describe their response to the predicted upward shift of forests.  相似文献   

14.
P. Hogg    P. J. Dare  J. V. Rintoul 《Ibis》1984,126(3):307-331
A brief account is given of the topography and climate of the Sudan and a more detailed survey is made of the vegetation and habitats afforded to wintering Palaearctic migrants in the Sahel and Soudan savannah zones in the central Sudan. Climatic conditions during the migration seasons are mentioned and the utilization of habitats by wintering migrants is broadly surveyed.
The status of 196 Palaearctic migrant species is treated briefly. The basic observational data are tabulated to summarize observed patterns of migration in terms of date, relative abundance and region (for which purpose the central Sudan is divided into four from west to east). Hitherto unpublished field notes of the authors and their collaborators are used, together with dated observations (including specimens collected) of earlier authors, to provide the fullest data on each species.
Moreau's (1967) paradox is discussed as it relates to the Sahel and Soudan savannah zones in the central Sudan, together with the degree of competition with resident African species in those zones. Some disparities between the spring and autumn abundance and d. istribution of Palaearctic migrants are discussed in relation to 40 species ana some tentative views are advanced on the possible reasons for such disparities. Evidence is adduced which points to Lanius minor and Coraczus garrulus (and possibly Circus pygargus , partially at least) having loop migrations, south through the Sudan and north through Arabia, and Falco wespertinus south through the Sudan and north through West Africa. An explanation is offered for the greater volume of water birds observed migrating down-Nile in spring compared with their volume up-Nile in autumn, and for the reversed situation observed in the region west of the Nile for these same species.
Shelduck Tadorna tadorna is included in the Sudan list for the first time.  相似文献   

15.
The unified neutral theory of biodiversity and biogeography provides a promising framework that can be used to integrate stochastic and ecological processes operating in ecological communities. Based on a mechanistic non‐neutral model that incorporates density‐dependent mortality, we evaluated the deviation from a neutral pattern in tree species abundance distributions and explored the signatures of historical and ecological processes that have shaped forest biomes. We compiled a dataset documenting species abundance distributions in 1168 plots encompassing 16 973 tree species across tropical, temperate, and boreal forests. We tested whether deviations from neutrality of species abundance distributions vary with climatic and historical conditions, and whether these patterns differ among regions. Non‐neutrality in species abundance distributions was ubiquitous in tropical, temperate, and boreal forests, and regional differences in patterns of non‐neutrality were significant between biomes. Species abundance evenness/unevenness caused by negative density‐dependent or abiotic filtering effects had no clear macro‐scale climatic drivers, although temperature was non‐linearly correlated with species abundance unevenness on a global scale. These findings were not significantly biased by heterogeneity of plot data (the differences of plot area, measurement size, species richness, and the number of individuals sampled). Therefore, our results suggest that environmental filtering is not universally increasing from warm tropical to cold boreal forests, but might affect differently tree species assembly between and within biomes. Ecological processes generating particularly dominant species in local communities might be idiosyncratic or region‐specific and may be associated with geography and climate. Our study illustrates that stochastic dynamical models enable the analysis of the interplay of historical and ecological processes that influence community assemblies and the dynamics of biodiversity.  相似文献   

16.
The article studies the change of clavarioid mycota species richness along the longitudinal gradient of climatic continentality in the forest tundra ecotone of Eurasia and the results are discussed for continental and regional levels using the basic climatic variables. It was found that species richness declines, both continentally and regionally, with climate continentality increasing. The Fennoscandian sector situated in the mild maritime climate is the richest, whereas Yakutia, with an ultracontinental harsh climate is the poorest. Strong positive correlations were found between species richness and mean annual temperature and precipitation. On the other hand, spatial turnover of species, or beta diversity, has a negative correlation with the macroclimatic gradient. There are European sectors, where clavarioid mycota associating with the birch and pine-spruce open woodlands have high similarity with their boreal variants, whereas in Siberian sectors, east of the Yenisei River, where mycota is associated with larch and cedar elfin bushes, the similarities are more akin to tundra variants. At the continental scale, there is no reliable relationship between mycota diversity with the flora richness and soil pH, but the permafrost thickness is significantly correlated with the studied levels of the clavarioid mycota diversity.  相似文献   

17.
The Canadian Migration Monitoring Network consists of several fixed migration monitoring stations (MMS) that apply constant-effort protocols to track changes in the abundance of migratory birds. Such monitoring will be important for tracking long-term population trends of songbirds, especially for species breeding in remote areas such as the North American boreal forest. The geographical catchment sampled by individual MMS, however, remains largely unknown. Here, we used hydrogen isotope measurements (δD) of feathers of white-throated sparrows (Zonotrichia albicollis) moving through Delta Marsh MMS in Manitoba, Canada, to determine both wintering and breeding ground catchment areas monitored by this station. The δD of tail feathers, collected from spring and fall migrants delineated previous breeding or natal latitudes, ranging from the northern to the southern extremes of the western boreal forest. The δD values of head feathers grown on the wintering grounds and collected during spring migration revealed that individuals wintered in a broad region of the southeastern United States. The isotope data showed no relationship between estimated breeding/natal and wintering latitudes of white-throated sparrow populations. Stable isotope data provided little information on longitude. Band-encounter analyses, however, indicated a clear east–west segregation of these sparrows across Canada, supporting connectivity among breeding/natal and wintering longitudes over the entire scale of this species' range. Isotope analyses of multiple feather types representing different periods and geographic regions of the annual cycle can provide key information on migratory connectivity for species moving through dedicated MMS.  相似文献   

18.
This study shows that patterns in some community assemblages are not mainly governed by local factors but also by regional ones. Using field data from 36 floodplain forest lakes in the Amazon basin, we present transect count data on the richness, abundance and distribution of floodplain lake fish species. A total of 194 fish species were collected, of which 43 were classified as short-distance migrants. A positive relation was found for local migratory and sedentary species abundances with distribution at a regional scale. The study also suggests that the probability of the presence of a migratory species is more affected by aspects of river-lake connectivity than sedentary species. Our results seem to indicate that migratory species play an important role in local dynamics of floodplain lakes.  相似文献   

19.
Process‐based models are effective tools to synthesize and/or extrapolate measured carbon (C) exchanges from individual sites to large scales. In this study, we used a C‐ and nitrogen (N)‐cycle coupled ecosystem model named CN‐CLASS (Carbon Nitrogen‐Canadian Land Surface Scheme) to study the role of primary climatic controls and site‐specific C stocks on the net ecosystem productivity (NEP) of seven intermediate‐aged to mature coniferous forest sites across an east–west continental transect in Canada. The model was parameterized using a common set of parameters, except for two used in empirical canopy conductance–assimilation, and leaf area–sapwood relationships, and then validated using observed eddy covariance flux data. Leaf Rubisco‐N dynamics that are associated with soil–plant N cycling, and depend on canopy temperature, enabled the model to simulate site‐specific gross ecosystem productivity (GEP) reasonably well for all seven sites. Overall GEP simulations had relatively smaller differences compared with observations vs. ecosystem respiration (RE), which was the sum of many plant and soil components with larger variability and/or uncertainty associated with them. Both observed and simulated data showed that, on an annual basis, boreal forest sites were either carbon‐neutral or a weak C sink, ranging from 30 to 180 g C m?2 yr?1; while temperate forests were either a medium or strong C sink, ranging from 150 to 500 g C m?2 yr?1, depending on forest age and climatic regime. Model sensitivity tests illustrated that air temperature, among climate variables, and aboveground biomass, among major C stocks, were dominant factors impacting annual NEP. Vegetation biomass effects on annual GEP, RE and NEP showed similar patterns of variability at four boreal and three temperate forests. Air temperature showed different impacts on GEP and RE, and the response varied considerably from site to site. Higher solar radiation enhanced GEP, while precipitation differences had a minor effect. Magnitude of forest litter content and soil organic matter (SOM) affected RE. SOM also affected GEP, but only at low levels of SOM, because of low N mineralization that limited soil nutrient (N) availability. The results of this study will help to evaluate the impact of future climatic changes and/or forest C stock variations on C uptake and loss in forest ecosystems growing in diverse environments.  相似文献   

20.
Most of the world’s terrestrial biome types can be found in China. To systematically investigate species composition and structure of China’s forest communities, we launched a long‐term project consisting forest vegetation surveys across China’s mountains in the mid 1990s. Over the study period, we have conducted vegetation surveys for 65 mountains and collected vegetation data from about 1500 forest plots, using consistent sampling protocols. In this paper we first introduce the aims, protocols, and major research themes of the project, and then describe the major characteristics of forest communities and their geographic patterns and climatic controls. As latitude increased, diameter at breast height (DBH) and height of trees increased, while individual density of trees and woody species richness decreased. Total basal area (TBA) of trees and species richness of herbs did not vary with latitude. Contemporary climate seems to drive these patterns: temperature was the leading factor for DBH, precipitation was most important for tree height and individual density, actual evapotranspiration (a surrogate of productivity) determined woody (trees and shrubs) species richness, and rainfall was the major controller of the herb species richness. The species–abundance relationship showed that species dominance (measured by the number of individuals per species) declined significantly from boreal forests to evergreen broadleaf forests from north to south. Our results are in line with the idea that productivity drives woody species richness. Similarly, we find that biomass (measured as TBA) is invariant along the environmental gradients. However, individual density varies dramatically, in contrast to the assumptions underlying the metabolic theory of ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号