首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity of African biomes to changes in the precipitation regime   总被引:4,自引:0,他引:4  
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning.  相似文献   

2.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   

3.
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics.  相似文献   

4.
Aim Although sharing many similarities in their vegetation types, South America and Africa harbour very dissimilar recent mammal faunas, not only taxonomically but also in terms of several faunistic patterns. However late Pleistocene and mid‐Holocene faunas, albeit taxonomically distinct, presented many convergent attributes. Here we propose that the effects of the Holocene climatic change on vegetation physiognomy has played a crucial role in shaping the extant mammalian faunistic patterns. Location South America and Africa from the late Pleistocene to the present. Methods Data presented here have been compiled from many distinct sources, including palaeontological and neontological mammalian studies, palaeoclimatology, palynology, and publications on vegetation ecology. Data on Pleistocene, Holocene and extant mammal faunas of South America and Africa allowed us to establish a number of similar and dissimilar faunistic patterns between the two continents across time. We then considered what changes in vegetation physiognomy would have occurred under the late Pleistocene last glacial maximum (LGM) and the Holocene climatic optimum (HCO) climatic regimes. We have ordained these proposed vegetation changes along rough physiognomic seral stages according to assumptions based on current botanical research. Finally, we have associated our hypothesized vegetation changes in South America and Africa with mammalian faunistic patterns, establishing a putative causal relationship between them. Results The extant mammal faunas of South America and Africa differ widely in taxonomical composition; the number of medium and large species they possess; behavioural and ecological characteristics related to herbivore herding, migration and predation; and biogeographical patterns. All such distinctions are mostly related to the open formation faunas, and have been completely established around the mid‐Holocene. Considering that the mid‐Holocene was a time of greater humidity than the late Pleistocene, vegetation cover in South America and Africa would have been dominated by forest or closed vegetation landscapes, at least for most of their lower altitude tropical regions. We attribute the loss of larger‐sized mammal lineages in South America to the decrease of open vegetation area, and their survival in Africa to the existence of vast savannas in formerly steppic or desertic areas in subtropical Africa, north and south of the equator. Alternative explanations, mostly dealing with the disappearance of South American megamammals, are then reviewed and criticized. Main conclusions The reduction of open formation areas during the HCO in South America and Africa explains most of the present distinct faunistic patterns between the two continents. While South America would have lost most of its open formations within the 30° latitudinal belt, Africa would have kept large areas suitable to the open formation mammalian fauna in areas presently occupied by desert and semi‐arid vegetation. Thus, the same general climatic events that affected South America in the late Pleistocene and Holocene also affected Africa, leading to our present day faunistic dissimilarities by maintaining the African mammalian communities almost unchanged while dramatically altering those of South America.  相似文献   

5.
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases.  相似文献   

6.
African herbaceous biomes will likely face drastic changes in the near future, due to climate change and pressures from increasing human activities. However, these biomes have been simulated only by dynamic global vegetation models and failing to include the diversity of C4 grasses has limited the accuracy of these models. Characterizing the floristic and physiognomic diversity of these herbaceous biomes would enhance the parameterization of C4 grass plant functional types, thereby improving simulations. To this end, we used lowermost and uppermost values of three grass physiognomic traits (culm height, leaf length, and leaf width) available in most floras to identify several grass physiognomic groups that form the grass cover in Senegal. We then checked the capacity of these groups to discriminate herbaceous biomes and mean annual precipitation domains. Specifically, we assessed whether these groups were sufficiently generic and robust to be applied to neighboring (Chad) and distant (South Africa) phytogeographic areas. The proportions of two physiognomic groups, defined by their lowermost limits, delineate steppe from savanna and forest biomes in Senegal, and nama‐karoo, savanna, and grassland biomes in South Africa. Proportions of these two physiognomic groups additionally delineate the mean annual precipitation domains <600 mm and >600 mm in Senegal, Chad, and South Africa, as well as the <250 mm and >1000 mm domains in South Africa. These findings should help to identify and parameterize new C4 grass plant functional types in vegetation models applied to West and South Africa.  相似文献   

7.
The results from two climate model simulations are used to explore the relationship between North Atlantic sea surface temperatures and the development of African aridity around 100,000 years ago. Through the use of illustrative simulations with an Earth System Climate Model, it is shown that freshwater fluxes associated with ice sheet surges into the North Atlantic, known as Heinrich events, lead to the southward shift of the intertropical convergence zone over Africa. This, combined with the overall increased aridity in the cooler mean climate, leads to substantial changes in simulated African vegetation cover, particularly in the Sahel. We suggest that Heinrich events, which occurred episodically throughout the last glacial cycle, led to abrupt changes in climate that may have rendered large parts of North, East, and West Africa unsuitable for hominin occupation, thus compelling early Homo sapiens to migrate out of Africa.  相似文献   

8.
Abstract. We develop and evaluate a large‐scale dynamic vegetation model, TEM‐LPJ, which considers interactions among water, light and nitrogen in simulating ecosystem function and structure. We parameterized the model for three plant functional types (PFTs): a temperate deciduous forest, a temperate coniferous forest, and a temperate C3 grassland. Model parameters were determined using data from forest stands at the Harvard Forest in Massachusetts. Applications of the model reasonably simulated stand development over 120 yr for Populus tremuloides in Wisconsin and for Pinus elliottii in Florida. Our evaluation of tree‐grass interactions simulated by the model indicated that competition for light led to dominance by the deciduous forest PFT in moist regions of eastern United States and that water competition led to dominance by the grass PFT in dry regions of the central United States. Along a moisture transect at 41.5° N in the eastern United States, simulations by TEM‐LPJ reproduced the composition of potential temperate deciduous forest, temperate savanna, and C3 grassland located along the transect.  相似文献   

9.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

10.

Aim

Although much tropical ecology generally focuses on trees, grasses are fundamental for characterizing the extensive tropical grassy biomes (TGBs) and, together with the tree functional types, for determining the contrasting functional patterns of TGBs and tropical forests (TFs). To study the factors that determine African biome distribution and the transitions between them, we performed the first continental analysis to include grass and tree functional types.

Location

Sub‐Saharan Africa.

Time period

2000–2010.

Major taxa studied

Savanna and forest trees and C4 grasses.

Methods

We combined remote‐sensing data with a land cover map, using tree functional types to identify TGBs and TFs. We analysed the relationships of grass and tree cover with fire interval, rainfall annual average and seasonality.

Results

In TGBs experiencing < 630 mm annual rainfall, grass growth was water limited. Grass cover and fire recurrence were strongly and directly related over the entire subcontinent. Some TGBs and TFs with annual rainfall > 1,200 mm had the same rainfall seasonality but displayed strongly different fire regimes.

Main conclusions

Water limitation to grass growth was fundamental in the driest TGBs, acting alongside the well‐known limitation to tree growth. Marked differences in fire regimes across all biomes indicated that fire was especially relevant for maintaining mesic and humid TGBs. At high rainfall, our results support the hypothesis of TGBs and TFs being alternative stable states maintained by a vegetation–fire feedback for similar climatic conditions.  相似文献   

11.
Aim The northern limits of temperate broadleaved species in Fennoscanndia are controlled by their requirements for summer warmth for successful regeneration and growth as well as by the detrimental effects of winter cold on plant tissue. However, occurrences of meteorological conditions with detrimental effects on individual species are rare events rather than a reflection of average conditions. We explore the effect of changes in inter‐annual temperature variability on the abundances of the tree species Tilia cordata, Quercus robur and Ulmus glabra near their distribution limits using a process‐based model of ecosystem dynamics. Location A site in central Sweden and a site in southern Finland were used as examples for the ecotone between boreal and temperate forests in Fennoscandia. The Finnish site was selected because of the availability of varve‐thickness data. Methods The dynamic vegetation model LPJ‐GUESS was run with four scenarios of inter‐annual temperature forcing for the last 10,000 years. In one scenario the variability in the thickness of summer and winter varves from the annually laminated lake in Finland was used as a proxy for past inter‐annual temperature variability. Two scenarios were devised to explore systematically the effect of stepwise changes in the variance and shape parameter of a probability distribution. All variability scenarios were run both with and without the long‐term trend in Holocene temperature change predicted by an atmospheric general circulation model. Results Directional changes in inter‐annual temperature variability have significant effects on simulated tree distribution limits through time. Variations in inter‐annual temperature variability alone are shown to alter vegetation composition by magnitudes similar to the magnitude of changes driven by variation in mean temperatures. Main conclusions The varve data indicate that inter‐annual climate variability has changed in the past. The model results show that past changes in species abundance can be explained by changes in the inter‐annual variability of climate parameters as well as by mean climate. Because inter‐annual climatic variability is predicted to change in the future, this component of climate change should be taken into account both when making projections of future plant distributions and when interpreting vegetation history.  相似文献   

12.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

13.
Aim To contribute to the intense debate surrounding the relative influence of climate and humans on Mediterranean‐region land cover over the past 6000 years, we assess the Holocene biogeography and vegetation history of southern Europe by means of an extensive pollen record dataset. Location The Mediterranean biogeographical zone and neighbouring parts of Iberia, the Alps and Anatolia, between 30° N, 48° N, 10° W and 45° E. Methods We compiled a southern European pollen record dataset using available pollen databases (124 sites) and other sources (74 sites), with improved spatial coverage and dating control compared with earlier studies. We used only those sites that had pollen data for both 0 ka and 6 ka. We reconstructed mid‐Holocene and present‐day biomes, arboreal pollen percentages and distribution and relative abundance of 11 key woody taxa, with anomaly maps. Results Northern temperate forest biomes extended further south at the mid‐Holocene than at present, but not as far as earlier studies suggested. Sclerophyllous vegetation occurred along the Mediterranean coast throughout the region at 6 ka. Arboreal pollen percentages were up to 50% higher than at present. At 6 ka, Olea, Fagus and Juniperus had smaller distributions and/or abundances; Abies, Cedrus and both deciduous and evergreen Quercus had larger distributions and/or abundances; Phillyrea, Pistacia and Cistus showed minimal difference; and Pinus showed a cosmopolitan distribution with variable abundance. Main conclusions Temporal difference analysis is more meaningful when only sites containing samples for all time slices are analysed. During the mid‐Holocene, southern Europe was more heavily forested with temperate vegetation than it is at present, but drought‐tolerant xeric vegetation was still widespread along the southern margins of the region. Although human land use may have caused the degradation of land between the mid‐Holocene and the present, the mere presence of xeric vegetation in the Mediterranean region does not require human impact. This challenges the commonly held belief that modern Mediterranean vegetation represents a ‘degraded’ state.  相似文献   

14.
气候变化情景下中国自然植被净初级生产力分布   总被引:11,自引:1,他引:10  
Zhao DS  Wu SH  Yin YH 《应用生态学报》2011,22(4):897-904
基于国际上较通用的Lund-Potsdam-Jena(LPJ)模型,根据中国自然环境特点对其运行机制进行调整,并重新进行了参数化,以B2情景气候数据作为主要的输入数据,以1961-1990年为基准时段,模拟了中国1991-2080自然植被净初级生产力(NPP)对气候变化的响应.结果表明:1961-1990年,中国自然植被的NPP总量为3.06 Pg C·a-1;1961-2080年,NPP总量呈波动下降趋势,且下降速度逐渐加快.在降水相对变化不大的条件下,平均温度的增加对我国植被生产力可能会产生一定的负面影响.NPP的空间分布从东南沿海向西北内陆呈逐渐递减趋势,在气候变化过程中,该格局基本没有太大变化.在东部NPP值相对较高地区,NPP值以减少为主,东北地区、华北东部和黄土高原地区的减少趋势尤为明显;在西部NPP值相对较低地区,NPP以增加趋势为主,青藏高原地区和塔里木盆地的表现尤为突出.随着气候变化的深入,东西部地区这种变化趋势的对比将越发明显.  相似文献   

15.
BIOME 6000 is an international project to map vegetation globally at mid‐Holocene (6000 14C yr bp ) and last glacial maximum (LGM, 18,000 14C yr bp ), with a view to evaluating coupled climate‐biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site‐based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present‐day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south‐western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial‐interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now‐arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land‐surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere‐biosphere models. The data could also be objectively generalized to yield realistic gridded land‐surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation‐climate feedbacks have focused on the hypothesized positive feedback effects of climate‐induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid‐Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.  相似文献   

16.
Changes in C4 grass distribution and abundance are frequently observed in Quaternary, Holocene and future environmental‐change scenarios. However, the factors driving these dynamics are not fully understood, and conflicting theories have been reported. In this paper, we present a very large dataset of modern altitudinal distribution profiles of C3 and C4 grasses covering the entire Neotropical Andes, which was compared with actual climate data. The results of multivariate analysis demonstrate that, in the Neotropical Andes, mean annual temperature is the main factor governing the modern altitudinal distribution of C3 and C4 grass species. The C3 and C4 grass distributions were compared with simulations based on the Lund‐Potsdam‐Jena dynamic global vegetation model (LPJ‐DGVM), which allowed the present grass distribution to be estimated. Finally, the DGVM was employed to simulate past and future scenarios, using the IPCC's climate projections for 2100 and PMIP2 models for the Holocene Optimum (HO, 6000 years bp ) and the Last Glacial Maximum (LGM, 21 000 years bp ). The results were found to be significantly different from those obtained using a simple photosynthetic model. According to LPJ forced with the PMIP2 models for the LGM, during the LGM, the C4 grasses would not have reached higher altitudes than found in the present day.  相似文献   

17.
Astronomically forced insolation changes have driven monsoon dynamics and recurrent humid episodes in North Africa, resulting in green Sahara Periods (GSPs) with savannah expansion throughout most of the desert. Despite their potential for expanding the area of prime hominin habitats and favouring out-of-Africa dispersals, GSPs have not been incorporated into the narrative of hominin evolution due to poor knowledge of their timing, dynamics and landscape composition at evolutionary timescales. We present a compilation of continental and marine paleoenvironmental records from within and around North Africa, which enables identification of over 230 GSPs within the last 8 million years. By combining the main climatological determinants of woody cover in tropical Africa with paleoenvironmental and paleoclimatic data for representative (Holocene and Eemian) GSPs, we estimate precipitation regimes and habitat distributions during GSPs. Their chronology is consistent with the ages of Saharan archeological and fossil hominin sites. Each GSP took 2–3 kyr to develop, peaked over 4–8 kyr, biogeographically connected the African tropics to African and Eurasian mid latitudes, and ended within 2–3 kyr, which resulted in rapid habitat fragmentation. We argue that the well-dated succession of GSPs presented here may have played an important role in migration and evolution of hominins.  相似文献   

18.
Woody cover in African savannas: the role of resources, fire and herbivory   总被引:2,自引:0,他引:2  
Aim To determine the functional relationships between, and the relative importance of, different driver variables (mean annual precipitation, soil properties, fire and herbivory) in regulating woody plant cover across broad environmental gradients in African savannas. Location Savanna grasslands of East, West and Southern Africa. Methods The dependence of woody cover on mean annual precipitation (MAP), soil properties (texture, nitrogen mineralization potential and total phosphorus), fire regimes, and herbivory (grazer, browser + mixed feeder, and elephant biomass) was determined for 161 savanna sites across Africa using stochastic gradient boosting, a refinement of the regression tree analysis technique. Results All variables were significant predictors of woody cover, collectively explaining 71% of the variance in our data set. However, their relative importance as regulators of woody cover varied. MAP was the most important predictor, followed by fire return periods, soil characteristics and herbivory regimes. Woody cover showed a strong positive dependence on MAP between 200 and 700 mm, but no dependence on MAP above this threshold when the effects of other predictors were accounted for. Fires served to reduce woody cover below rainfall‐determined levels. Woody cover showed a complex, non‐linear relationship with total soil phosphorus, and was negatively correlated with clay content. There was a strong negative dependence of woody cover on soil nitrogen (N) availability, suggesting that increased N‐deposition may cause shifts in savannas towards more grassy states. Elephants, mixed feeders and browsers had negative effects on woody cover. Grazers, on the other hand, depressed woody cover at low biomass, but favoured woody vegetation when their biomass exceeded a certain threshold. Main conclusions Our results indicate complex and contrasting relationships between woody cover, rainfall, soil properties and disturbance regimes in savannas, and suggest that future environmental changes such as altered precipitation regimes, N‐enrichment and elevated levels of CO2 are likely to have opposing, and potentially interacting, influences on the tree–grass balance in savannas.  相似文献   

19.
Savanna woody encroachment is widespread across three continents   总被引:1,自引:0,他引:1       下载免费PDF全文
Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta‐analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO2, changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N‐fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.  相似文献   

20.
A new fire model is proposed which estimates areas burnt on a macro‐scale (10–100 km). It consists of three parts: evaluation of fire danger due to climatic conditions, estimation of the number of fires and the extent of the area burnt. The model can operate on three time steps, daily, monthly and yearly, and interacts with a Dynamic Global Vegetation Model (DGVM), thereby providing an important forcing for natural competition. Fire danger is related to number of dry days and amplitude of daily temperature during these days. The number of fires during fire days varies with human population density. Areas burnt are calculated based on average wind speed, available fuel and fire duration. The model has been incorporated into the Lund‐Potsdam‐Jena Dynamic Global Vegetation Model (LPJ‐DGVM) and has been tested for peninsular Spain. LPJ‐DGVM was modified to allow bi‐directional feedback between fire disturbance and vegetation dynamics. The number of fires and areas burnt were simulated for the period 1974–94 and compared against observations. The model produced realistic results, which are well correlated, both spatially and temporally, with the fire statistics. Therefore, a relatively simple mechanistic fire model can be used to reproduce fire regime patterns in human‐ dominated ecosystems over a large region and a long time period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号