首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The objective of this study was to prepare and characterize beads of Gelucire 43/01 for floating delivery of metformin hydrochloride (MH). The beads were evaluated for particle size, surface morphology, percent drug entrapment, percent yield, differential scanning calorimetry (DSC), in vitro floating ability, and in vitro drug release. Aging effect on storage was evaluated using hot stage microscopy (HSM), DSC, scanning electron microscopy, and in vitro floating ability. The formed beads were sufficiently hard and spherical in shape. Photomicrographs show that the surface was porous in nature. The average particle diameter of beads was found to be in the size range of 3.85 to 3.95 mm, and percent entrapment was 83.07% to 86.13%. The beads demonstrated favorable in vitro floating ability. The analysis of DSC thermograms revealed no physical interaction between the lipid and the drug in the prepared beads. Prepared formulations showed better controlled release behavior when compared with its conventional dosage form and comparable release profile with marketed sustained release product. HSM photomicrograph showed presence of some unmelted portion even at 43°C and completely melts on 51°C in aged sample. It was found that there was no significant effect on floating ability of aged beads since it remains floats up to 8 h study period. Thus, it is concluded that beads of Gelucire 43/01 could be serve as an effective carrier for highly water-soluble antihyperglycemic drugs like MH for the controlled delivery.  相似文献   

2.
The purpose of this research was to develop and optimize a controlled-release multiunit floating system of a highly water soluble drug, ranitidine HCl, using Compritol, Gelucire 50/13, and Gelucire 43/01 as lipid carriers. Ranitidine HCl-lipid granules were prepared by the melt granulation technique and evaluated for in vitro floating and drug release. ethyl cellulose, methylcellulose, and hydroxypropyl methylcellulose were evaluated as release rate modifiers. A 32 full factorial design was used for optimization by taking the amounts of Gelucire 43/01 (X 1) and ethyl cellulose (X 2) as independent variables, and the percentage drug released in 1(Q1), 5(Q5), and 10 (Q10) hours as dependent variables. The results revealed that the moderate amount of Gelucire 43/01 and ethyl cellulose provides desired release of ranitidine hydrochloride from a floating system. Batch F4 was considered optimum since it contained less Gelucire and was more similar to the theoretically predicted dissolution profile (f2=62.43). The temperature sensitivity studies for the prepared formulations at 40°C/75% relative humidity for 3 months showed no significant change in in vitro drug release pattern. These studies indicate that the hydrophobic lipid Gelucire 43/01 can be considered an effective carrier for design of a multiunit floating drug delivery system for highly water soluble drugs such as ranitidine HCl. Published: April 13, 2007  相似文献   

3.
Floating famotidine loaded mineral oil-entrapped emulsion gel (MOEG) beads were prepared by the emulsion–gelation method. Different polysaccharides (sodium alginate and pectin), oil concentrations (10%, 20% and 30% w/w) and drug:polymer (D:P) ratios (1:1, 2:1 and 3:1) were used and their influence on beads uniformity, drug entrapment efficiency (DEE) and in vitro drug release, was studied. The results clearly indicated that retardation of drug release for 4 h was achieved by the oil hydrophobic diffusional barrier, especially in the presence of the compact network of alginate beads. Calcium alginate beads containing 20% oil and 2:1 D:P ratio, showed an optimum DEE of 88.32%. When evaluated in vivo, this formula displayed superior antiulcer activity (>2) over drug suspension or marketed conventional tablets.  相似文献   

4.
The present study aims to develop floating drug delivery system by sublimation of ammonium carbonate (AMC). The core tablets contain a model drug, hydrochlorothiazide, and various levels (i.e., 0–50% w/w) of AMC. The tablets were then coated with different amounts of the polyacrylate polymers (i.e., Eudragit® RL100, Eudragit® RS100, and the mixture of Eudragit® RL100 and Eudragit® RS100 at 1:1 ratio). The coated tablets were kept at ambient temperature (25°C) or cured at 70°C for 12 h before further investigation. The floating and drug release behaviors of the tablets were performed in simulated gastric fluid USP without pepsin at 37°C. The results showed that high amount of AMC induced the floating of the tablets. The coated tablets containing 40 and 50% AMC floated longer than 8 h with a time-to-float of about 3 min. The sublimation of AMC from the core tablets decreased the density of system, causing floating of the tablets. The tablets coated with Eudragit® RL100 floated at a faster rate than those of Eudragit® RS100. Even the coating level of polymer did not influence the time-to-float and floating time of coated tablets containing the same amount of AMC, the drug release from the tablets coated with higher coating level of polymer showed slower drug release. The results suggested that the sublimation technique using AMC is promising for the development of floating drug delivery system.  相似文献   

5.
In this paper, ketoprofen and ketoprofen lysinate were used as model drugs in order to investigate release profiles of poorly soluble and very soluble drug from sodium alginate beads manufactured by prilling. The effect of polymer concentration, viscosity, and drug/polymer ratio on bead micromeritics and drug release rate was studied. Ketoprofen and ketoprofen lysinate loaded alginate beads were obtained in a very narrow dimensional range when the Cross model was used to set prilling operative conditions. Size distribution of alginate beads in the hydrated state was strongly dependent on viscosity of drug/polymer solutions and frequency of the vibration. The release kinetics of the drugs showed that drug release rate was related with alginate concentration and solubility of the drug. Alginate solutions with concentration higher than 0.50% (w/w) were suitable to prepare ketoprofen gastro-resistant formulation, while for ketoprofen lysinate alginate, concentration should be increased to 1.50% (w/w) in order to retain the drug in gastric environment. Differential scanning calorimetry thermograms and Fourier transform infrared analyses of drug-loaded alginate beads indicated complex chemical interactions between carboxyl groups of the drug and polymer matrix in drug-loaded beads that contribute to the differences in release profile between ketoprofen and ketoprofen lysinate. Total release of the drugs in intestinal medium was dependent on the solubility of the drug and was achieved between 4 and 6 h.  相似文献   

6.
Context: Topical treatment of skin disease needs to be strategic to ensure high drug concentration in the skin with minimum systemic absorption.

Objective: The aim of this study was to produce semisolid nanostructured lipid carrier (NLC) formulations, for topical delivery of the corticosteroid drug, diflucortolone valerate (DFV), with minimum systemic absorption.

Method: NLC formulations were developed using a high shear homogenization combined with sonication, using Precirol® ATO5 or Tristearin® as the solid lipid, Capryol? or isopropyl myristate as the liquid lipid and Poloxamer® 407 as surfactant. The present study addresses the influence of different formulations composition as solid lipid, liquid lipid types and concentrations on the physicochemical properties and drug release profile from NLCs.

Results and discussion: DFV-loaded NLC formulations possessed average particle size ranging from 160.40?nm to 743.7?nm with narrow polydispersity index. The encapsulation efficiency was improved by adding the lipid-based surfactants (Labrasol® and Labrafil® M1944CS) to reach 68%. The drug release from the investigated NLC formulations showed a prolonged release up to 12?h. The dermatopharmacokinetic study revealed an improvement in drug deposition in the skin with the optimized DFV-loaded NLC formulation, in contrast to a commercial formulation.

Conclusion: NLC provides a promising nanocarrier system that work as reservoir for targeting topical delivery of DFV.  相似文献   


7.
Summary The production of glucuronides from drugs by immobilized microsomal uridine diphosphate (UDP)-glucuronosyltransferase has been investigated. Of all the immobilization methods used (covalent binding, adsorption by ionic or hydrophobic interactions), only entrapment of microsomes into alginate beads in the presence of polyethyleneimine was effective in producing high glucuronidation rates, thus leading to the formation of large amounts of metabolites. The performance of the bioreactor was optimized with the drug 3-azido-3-deoxythymidine (AZT), active against the human immunodeficiency virus, as a model substrate of UDP-glucuronosyltransferase. Calcium (12 mm) could optimally improve the stability of microsomes entrapped in alginate beads. Upon immobilization, enzyme activation occurred, leading to a fivefold increase in specific activity. The determination of apparent K m and V max revealed that AZT was a better substrate for the immobilized enzyme than free microsomes. The AZT-glucuronide production obtained after 6 h was threefold higher than that observed with free microsomes. This bioreactor was also efficient in production of glucuronides from structurally different compounds such as bilirubin, 4-nitrophenol, clofibric acid, pirprofen, dextrorphan or morphine, the corresponding glucuronide of which possesses pharmacological or toxicological interest. Offprint requests to: J. Magdalou  相似文献   

8.
Thermomucor indicae-seudaticae was immobilized in alginate, κ-carrageenan, agarose, agar, polyacrylamide and loofah (Luffa cylindrica) sponge (as such or coated with alginate/starch/Emerson YpSs agar), and used for the production of glucoamylase in submerged fermentation. The mycelium developed from alginate-immobilized sporangiospores secreted higher glucoamylase titres (22.7 U ml−1) than those immobilized in other gel matrices and the freely growing mycelial pellets (18.5 U ml−1). Loofah network provided a good support for mycelial growth, but the enzyme production was lower than that attained with alginate beads. Glucoamylase production increased with inoculum density and the optimum levels were achieved when 40 calcium alginate beads (∼5 × 106 immobilized spores) were used to inoculate 50 ml production medium. The alginate bead inoculum displayed high storage stability at 4°C and produced comparable enzyme titres up to 120 days. The glucoamylase production by hyphae emerged from the immobilized sporangiospores was almost stable over eight batches of repeated fermentation. Scanning electron micrographs of alginate beads, after batch fermentation, revealed extensive mycelial growth inside and around the beads.  相似文献   

9.
A multiple-unit-type oral floating dosage form (FDF) of 5-fluorouracil (5-FU) was developed to prolong gastric residence time, target stomach cancer, and increase drug bioavailability. The floating bead formulations were prepared by dispersing 5-FU together with calcium carbonate into a mixture of sodium alginate and hydroxypropyl methylcellulose solution and then dripping the dispersion into an acidified solution of calcium chloride. Calcium alginate beads were formed, as alginate undergoes ionotropic gelation by calcium ions and carbon dioxide develops from the reaction of carbonate salts with acid. The evolving gas permeated through the alginate matrix, leaving gas bubbles or pores, which provided the beads buoyancy. The prepared beads were evaluated for percent drug loading, drug entrapment efficiency, image, surface topography, buoyancy, and in vitro release. The formulations were optimized for different weight ratios of gas-forming agent and sodium alginate. The beads containing higher amounts of calcium carbonate demonstrated instantaneous, complete, and excellent floating ability over a period of 24 hours. The optimized formulation was subjected to in vivo antitumor studies to check the therapeutic efficacy of the floating dosage forms containing 5-FU against benzo(a)pyrene-induced stomach tumors in albino female mice (Balb/C strain). The multiple-bead FDF was found to reduce the tumor incidence in mice by 74%, while the conventional tablet dosage form reduced this incidence by only 25%. Results indicate that FDF performed significantly better than the simple tablet dosage form. Published: June 22, 2007  相似文献   

10.
Dye decolorisation by laccase entrapped in copper alginate   总被引:1,自引:0,他引:1  
A novel immobilisation system was developed for dye decolorisation using laccase produced by Ganoderma sp. KU-Alk4. The enzyme showed high efficiency in dye decolorisation when entrapped in Cu–Al and Cu-alginate beads. The former gave the highest activity but the enzyme activity survived longer in the latter. An experimental design of two 3 × 3 Latin Square experiments was applied to evaluate the effects of three different alginate compositions (low, intermediate and high mannuronate), concentration of alginate, (1.5, 3.0 and 4.5% w/v) and concentration of cross-linking agent, CuSO4 (0.075, 0.15 and 0.225 M) on the decolorisation of indigo carmine dye and residual laccase activity in beads. The most significant factor for residual activity was the concentration of the cross-linking agent (P < 0.05) followed by alginate composition (P < 0.1). Increasing the alginate concentration resulted in only small increase in the dye decolorisation. However, higher laccase activity remained in 3.0% w/v alginate beads. Maximal dye decolorisation was achieved when 3.6% w/v low mannuronate alginate and 0.15 M CuSO4 was used. Optimal conditions were confirmed in an extended experimental run. Results are presented from 9 successive batch runs over 12 days, reaching 96% removal of the dye (216 mg/l).  相似文献   

11.
Abstract

α‐Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl2 concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl2 concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL?1, and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40°C.  相似文献   

12.
《Process Biochemistry》2014,49(5):840-844
The effective system of reusing mycelial fructosyltransferase (FTase) immobilized with two polymers, chitosan and alginate were evaluated for continuous production of fructooligosaccharides (FOS). The alginate beads were successfully developed by maintaining spherical conformation of using 0.3% (w/v) sodium alginate with 0.1% (w/v) of CaCl2 solution for highest transfructosylating activity. The characteristics of free and immobilized FTase were investigated and results showed that optimum pH and temperature of FTase activity were altered by immobilized materials. A successive production of FOS by FTase entrapped alginate beads was observed at an average of 62.96% (w/w) up to 7 days without much losing its activity. The data revealed by HPLC analysis culminate 67.75% (w/w) of FOS formation by FTase entrapped alginate beads and 42.79% (w/w) by chitosan beads in 36 h of enzyme substrate reaction.  相似文献   

13.
目的:本文研究了一种海藻酸钠漂浮微囊的制备方法用以实现胃部持续给药。方法:采用微胶囊发生器制备海藻酸钠漂浮微囊,壁材为海藻酸钠,芯材为食用油的漂浮微囊,衡量不同的制备参数对微囊的理化特性影响;采用克拉霉素作为模型脂溶性药物,测量漂浮药物递送系统的控制释放性质、以及微囊载药特性和小鼠体内漂浮验证。结果:成功制备出了具有漂浮特性的海藻酸钠微囊,其中泵送速度对微囊性质的影响最大。制备出的微囊具有低细胞毒性,可以实现90%的药物包埋率。此外,微囊可以在小鼠的胃中保存超过6小时,具有良好的漂浮特性。结论:海藻酸钠漂浮微囊是一种有效的胃部药物递送系统,可明显延长药物在胃部的滞留时间。  相似文献   

14.
The purpose of the present study was to formulate a self-nanoemulsifying system (SNES) containing model lipophilic drug, felodipine (FLD), to improve its solubility. The SNES was formulated using varying amounts of Miglyol® 840 (as an oil), Cremophor® EL (as a surfactant), and Capmul® MCM (as a co-surfactant). The SNES were characterized for turbidity, droplet size and in vitro FLD release. The SNES containing oil, surfactant, and co-surfactant in the weight ratio of 3.5:1.0:1.0, respectively, showed good emulsification, median droplet size of 421 nm, and rapid FLD release (>90% release in 15 min). Gelling was induced in the SNES by addition of Aerosil® 200 (A 200). Rheological studies clearly demonstrated the formation of gelled microstructure with enhanced elasticity for SNES with A 200. Since FLD warrants extended delivery for management of hypertension, the gelled SNES was further encased within the hydrophobic Gelucire® 43/01 (GEL) coat to extend the release of FLD. Caprol® PGE-860 (CAP) was added to this coat as a release enhancer. No interaction was seen between GEL and CAP in differential scanning calorimetry. The effect of two formulation variables in the encased SNES, viz., the gelling agent (A200) and the release enhancer (CAP), on the in vitro FLD release was evaluated using 32 factorial design experiments. CAP by virtue of channel formation in GEL coat favored the FLD release, while the A200 retarded the FLD release by inducing gelling. At later time points, an interaction between these two variables was found to govern extended release of FLD. The developed gelled SNES encased within the GEL coat can be used as an extended release composition for lipophilic drugs.  相似文献   

15.
Streptococcus thermophilusand Lactobacillus bulgaricus were co-immobilized in different systems with varying calcium (0.1–1.5M) and alginate (1–2<><>, w/v) concentrations. Highest lactic acid production was 35 g l1 when both bacteria were in high viscosity beads (1<><>, w/v alginate) hardened in 0.1 M CaCl2 .The gel bead composition affected size and distribution of entrapped lactic acid bacteria.  相似文献   

16.
Summary A procedure which does not involve the use of an immiscible organic solvent phase is described for the entrapment of yeast cells in porous beads of polyacrylamide gel. The cells are rapidly dispersed at 4° C in an aqueous solution containing sodium alginate and acrylamide-N,Nmethylene-bis-acrylamide monomer, and the suspension is immediately dropped into a solution of calcium formate to give calcium alginate coated beads. Polyacrylamide gel forms within the bead. The calcium alginate is subsequently leached out of the composite bead with either sodium citrate or potassium phosphate buffer solution. Cells of Saccharomyces uvarum ATCC 26 602 entrapped in such polyacrylamide beads ferment cane molasses in batch mode at higher specific ethanol productivity than a free cell suspension. Their volumetric productivity in continuous fermentation is higher than that of Ca2+-alginate immobilized cells.NCL Communication No. 4383  相似文献   

17.
The bioavailability of therapeutic agents from eye drops is usually limited due to corneal barrier functions and effective eye protective mechanisms. Therefore, the current study aims to enhance ocular bioavailability of brimonidine, a potent antiglaucoma drug, through the preparation of ocular inserts. Solvent casting technique was employed to prepare the inserts using polyvinylpyrrolidone K-90 (PVP K-90) as film-forming polymer blended with different viscosity grades of bioadhesive polymers namely hydroxypropyl methycellulose, carbopol, sodium alginate, and chitosan. The prepared ocular inserts were evaluated for various physicochemical parameters, swelling behavior, and in vitro release patterns. Sodium alginate-based ocular inserts revealed the most sustainment in drug release (99% at 6 h), so it was selected for further modifications via coating it, on one side or dual sides, using hydrophobic film composed of either ethylcellulose or Eudragit RSPO. The obtained in vitro release results for the modified ocular inserts revealed that ethylcellulose is superior to Eudragit RSPO in terms of brimonidine release sustainment effect. Ocular inserts composed of 7% PVP K-90, 1.5% low molecular weight sodium alginate with or without ethylcellulose coat were able to sustain the in vitro release of brimonidine. Their therapeutic efficacy regarding intraocular pressure (IOP) lowering effect when inserted in albino rabbits eyes showed superior sustainment effect compared with that of brimonidine solution. Furthermore, due to both the mucoadhesive property and the drug sustainment effect, the one-side-coated ocular insert showed more IOP lowering effect compared with that of its non-coated or dual-side-coated counterpart.  相似文献   

18.
An organophosphate-degrading soil isolate of Pseudomonas sp. A3, immobilized at 5% (wet wt/v) cell mass in 3% (w/v) sodium alginate beads, detoxified 99% of 1 mm methylparathion in 48 h. The beads were re-usable for five batches, the sixth batch only giving 73% methylparathion removal.  相似文献   

19.
Summary Ethanol concentration and fermentation productivity using Saccharomyces cerevisiae were substantially increased in shake flask cultures with a normal inoculum by combining 3 methods: (a) by making nutrient additions to the standard medium for ethanol production, (b) by immobilizing the cells in alginate beads and (c) by using a glucose step-feeding batch process. Ethanol concentration by free yeast was improved from 5.9% (w/w) to 9.6% (w/w) when a further 0.8% yeast extract and 1% animal peptone were added to the standard 30% (w/v) glucose nutrient medium. This was further increased to 12.8% (w/w) by using alginate immobilized yeast. The ethanol concentration was increased again, to 15.0% (w/w) by using the glucose step-feeding batch process.  相似文献   

20.
Microalgae immobilization in alginate matrixes has been recently used to perform in situ experiments. However, the susceptibility of alginate matrixes to cation chelating agents and to antigelling cations, which can cause bead disruption or dissolution, is a major limitation for in situ exposures in estuarine and marine systems. The ultimate goal of this study was to produce alginate beads stable in seawater and suited for Phaeodactylum tricornutum growth. For this, different concentrations of alginate isolated from Macrocystis pyrifera (1.5, 1.9 and 2.3% [w/v]) and Laminaria hyperborea (4.0, 4.9 and 5.8% [w/v]), two concentrations of the hardening cations calcium and strontium (2.0 and 4.0% [w/v]), and the use of the polycation chitosan were investigated. Only beads found to be more stable after 16 days of exposure in seawater were inoculated with the microalga. P. tricornutum immobilized in beads prepared from 5.8% L. hyperborea alginate and in all beads in which a chitosan hardening treatment was applied showed a weak microalgal growth. Beads prepared using 4.9% of L. hyperborea alginate and a 4% (w/v) strontium solution were found to be the most stable and the most suitable for microalgal growth, and were exposed in the field, under natural fluctuating conditions of light and temperature. In situ growth rates of immobilized P. tricornutum cells demonstrated the potential of these beads for future use in in situ experiments in estuarine and marine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号