首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
AIM: The rodent genus Microdipodops (kangaroo mice) includes two sand-obligate endemics of the Great Basin Desert: M. megacephalus and M. pallidus. The dark kangaroo mouse, M. megacephalus, is distributed throughout the Great Basin and our principal aims were to formulate phylogenetic hypotheses for this taxon and make phylogeographical comparisons with its congener. LOCATION: The Great Basin Desert of western North America. METHODS: DNA sequence data from three mitochondrial genes were examined from 186 individuals of M. megacephalus, representing 47 general localities. Phylogenetic inference was used to analyse the sequence data. Directional analysis of phylogeographical patterns was used to examine haplotype sharing patterns and recover routes of gene exchange. Haplotype-area curves were constructed to evaluate the relationship between genetic variation and distributional island size for M. megacephalus and M. pallidus. RESULTS: Microdipodops megacephalus is a rare desert rodent (trapping success was 2.67%). Temporal comparison of trapping data shows that kangaroo mice are becoming less abundant in the study area. The distribution has changed slightly since the 1930s but many northern populations now appear to be small, fragmented, or locally extinct. Four principal phylogroups (the Idaho isolate and the western, central and eastern clades) are evident; mean sequence divergence between phylogroups for cytochrome b is c. 8%. Data from haplotype sharing show two trends: a north-south trend and a web-shaped trend. Analyses of haplotype-area curves reveal significant positive relationships. MAIN CONCLUSIONS: The four phylogroups of M. megacephalus appear to represent morphologically cryptic species; in comparison, a companion study revealed two cryptic lineages in M. pallidus. Estimated divergence times of the principal clades of M. megacephalus (c. 2-4 Ma) indicate that these kangaroo mice were Pleistocene invaders into the Great Basin coincident with the formation of sandy habitats. The north-south and web patterns from directional analyses reveal past routes of gene flow and provide evidence for source-sink population regulation. The web pattern was not seen in the companion study of M. pallidus. Significant haplotype-area curves indicate that the distributional islands are now in approximate genetic equilibrium. The patterns described here are potentially useful to conservation biologists and wildlife managers and may serve as a model for other sand-obligate organisms of the Great Basin.  相似文献   

2.
The Great Basin Desert of western North America has experienced frequent habitat alterations due to a complex biogeographic history and recent anthropogenic impacts, with the more recent alterations likely resulting in the decline of native fauna and flora. Dark (Microdipodops megacephalus) and pallid (M. pallidus) kangaroo mice are ecological specialists found within the Great Basin Desert and are potentially ideal organisms for assessing ecosystem health and inferring the biogeographic history of this vulnerable region. Herein, newly acquired nuclear‐encoded microsatellite loci were utilized to assess patterns of variation within and among spatially discrete groups of kangaroo mice and to evaluate gene flow, demographic trends, and genetic integrity. Results confirm that there are at least three genetically distinct units within M. megacephalus and two such units within M. pallidus. The three units of M. megacephalus appear to have different demographic histories, with effectively no gene flow among them since their divergence. Similarly, the two units of M. pallidus also appear to have experienced different demographic histories, with effectively no gene exchange. Contemporary effective population sizes of all groups within Microdipodops appear to be low (<500), suggesting that each genetic lineage may have difficulty coping with changing environmental pressures and hence may be at risk of extirpation. Results of this study indicate that each Microdipodops group should be recognized, and therefore managed, as a separate unit in an effort to conserve these highly specialized taxa that contribute to the diversity of the Great Basin Desert ecosystem.  相似文献   

3.
4.
Aim The goal of this study was to determine the extent of suitable habitats across the basins and ranges of the Great Basin for 13 montane mammals in the present and during the Last Glacial Maximum (LGM). For all these mammal species, we test whether: (1) more suitable habitat was available in basin areas during the LGM; (2) suitable habitat shifted upwards in elevation between the LGM and the present; (3) more ranges have suitable habitat than are currently occupied; and (4) these species are currently restricted to suitable habitats at higher‐elevation range areas. We also examine whether and how much distributional response varies among these montane mammal species. Location The Great Basin of western North America. Methods We re‐examine the past and present distributions of 13 Great Basin montane mammals using ecological niche modelling techniques that utilize now widely available species occurrence data and new, fine‐scale past climatological GIS layers in the present and at the LGM. These methods provide an objective, repeatable means for visual comparison of past and present modelled distributions for species examined in previous biogeographical studies. Results Our results indicate greater areal and lower elevational suitable habitat in the LGM than at present for nearly all montane mammals, and that there is more suitable habitat at present than is currently occupied. Our results also show that lowland areas provide suitable dispersal routes between ranges for most of the montane mammals both at the LGM and at present. However, three of the 13 species have little to no predicted suitable habitat in the LGM near currently occupied ranges, in contrast to the pattern for the other 10. For these species, the model results support more recent long‐distance colonization. Main conclusions Our finding of suitable lowland dispersal routes in the present for most species supports and greatly extends similar findings from single‐species studies. Our results also provide a visually striking confirmation that changes in species distribution and colonization histories of Great Basin montane mammals vary in a fashion related to the tolerances and requirements of each of these species; this has previously been hypothesized but not rigorously tested for multiple montane mammals in the region.  相似文献   

5.
6.
Combined results based on morphological characters and analyses of partial sequences of the 16s rRNA and coI genes confirm the validity of a new, cryptic, symphurine tonguefish from the western North Pacific Ocean. Symphurus leucochilus n. sp., a diminutive species reaching sizes to c. 67 mm standard length, is described from nine specimens that were collected from fish‐landing ports and from trawls made at c. 150 m off Taiwan and Japan. Symphurus leucochilus shares many similar features with those of Symphurus microrhynchus and that of several undescribed species that are morphologically similar to S. microrhynchus. Symphurus leucochilus has also been misidentified as Symphurus orientalis in fish collections because of shared similarities in some aspects of their morphology. The new species differs from all congeners by the following combination of meristic, morphological and pigmentation features: a predominant 1–2–2–2–2 pattern of interdigitation of proximal dorsal‐fin pterygiophores and neural spines; 12 caudal‐fin rays; 89–92 dorsal‐fin rays; 76–80 anal‐fin rays; 49–51 total vertebrae; four hypurals; 75–83 longitudinal scale rows; 32–35 transverse scales; 15–17 scale rows on the head posterior to the lower orbit; absence of a fleshy ridge on the ocular‐side lower jaw and a membranous connection between the anterior nostril and lower part of the eye; a narrow interorbital space and dorsal‐fin origin anterior to the vertical through the anterior margin of the upper eye; absence of both dermal spots at bases of anterior dorsal‐fin rays and melanophores on the isthmus; uniformly yellow to light‐brown ocular‐side colouration without bands; dorsal and anal fins with alternating series of dark rectangular blotches and unpigmented areas; a uniform white blind side and a bluish‐black peritoneum. Despite overall similarities in morphology between S. leucochilus and S. orientalis, as well as between two of the nominal species morphologically similar to S. microrhynchus, analyses of partial 16s rRNA and coI gene sequences show that S. leucochilus, S. orientalis and the two other nominal species represent three distinct lineages within the genus Symphurus.  相似文献   

7.
Maskrays of the genus Neotrygon (Dasyatidae) have dispersed widely in the Indo‐West Pacific being represented largely by an assemblage of narrow‐ranging coastal endemics. Phylogenetic reconstruction methods reproduced nearly identical and statistically robust topologies supporting the monophyly of the genus Neotrygon within the family Dasyatidae, the genus Taeniura being consistently basal to Neotrygon, and Dasyatis being polyphyletic to the genera Taeniurops and Pteroplatytrygon. The Neotrygon kuhlii complex, once considered to be an assemblage of color variants of the same biological species, is the most derived and widely dispersed subgroup of the genus. Mitochondrial (COI, 16S) and nuclear (RAG1) phylogenies used in synergy with molecular dating identified paleoclimatic fluctuations responsible for periods of vicariance and dispersal promoting population fragmentation and speciation in Neotrygon. Signatures of population differentiation exist in N. ningalooensis and N. annotata, yet a large‐scale geological event, such as the collision between the Australian and Eurasian Plates, coupled with subsequent sea‐level falls, appears to have separated a once homogeneous population of the ancestral form of N. kuhlii into southern Indian Ocean and northern Pacific taxa some 4–16 million years ago. Repeated climatic oscillations, and the subsequent establishment of land and shallow sea connections within and between Australia and parts of the Indo‐Malay Archipelago, have both promoted speciation and established zones of secondary contact within the Indian and Pacific Ocean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号