首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Part of the abandoned cropland in Mediterranean landscapes is being subjected to afforestation dominated by pines. Here we simultaneously evaluate the effect of three categories of factors as predictors of the interspecific variation in bird habitat occupancy of fragmented afforestations, namely regional distribution, habitat preferences, and life-history traits of species. We use the “natural experiment” that highly fragmented pine plantations of central Spain represent due to the prevailing pattern of land ownership of small properties. Many species with marked habitat preferences for woodland habitats were very scarce or were never recorded in this novel habitat within a matrix of deforested agricultural landscape. Interspecific variability in occurrence was mainly explained by regional distribution patterns: occurrence was significantly and positively associated with the proportion of occupied 10 × 10 UTM km squares around the study area, habitat breadth, and population trend of species in the period 1998–2011. It was also positively associated with regional occupancy of mature and large pine plantations. Other predictor variables related to habitat preferences (for woodland, agricultural and urban habitats) or life-history traits (migratory strategy, body mass, and clutch size) were unrelated to the occurrence of species. Thus, small man-made pinewood islands funded by the Common Agrarian Policy within a landscape dominated by Mediterranean agricultural habitats only capture widespread and habitat generalist avian species with increasing population trends, not contributing to enhance truly woodland species.  相似文献   

2.
A qualitative survey of the terrestrial bird community (sixty-five species) and a quantitative analysis of the five-diurnal raptor assemblage were earned out on 33 islands of the oceanic Andaman archipelago in the Bay of Bengal Among seven geographical parameters, island area was the main determinant of species richness for both the whole bird community and each category of species associated with four habitat types Species richness decreased most markedly with island size in the smallest islands and in open habitat species The rarest forest species were the most extinction prone with decreasing island size Specific habitat selection was the most prominent ecological correlate of inter island species distribution Observed species distribution patterns did not fit the random species placement or equprobable occurrence hypotheses Raptors were primarily forest species, two of them restricted to forest interior, two more tolerant of fragmentation and one naturally associated with mangroves Unexpectedly, the two rarest and most area sensitive raptors were the two smallest species with a strong active flight, whereas the most abundant and widespread species was the most forest interior and endemic taxon Both raptor species richness, species frequency of occurrence and abundance indices decreased with island area, which was consistently the most significant determinant of every species' occurrence and abundance There was a significant correlation between abundance or frequency of occurrence of every raptor species and the proportion of their preferred habitat type No relationship was found between habitat niche breadth or local abundance of any species and their distribution range among islands The hypothesis of random composition of species assemblages on islands was not supported because of species specific habitat selection Any evidence of interspecific competitive exclusion was limited to the striking habitat segregation of the two congeneric serpent eagles A metapopulation structure was suggested by small population distribution patterns, observed sea crossing and the circumstances of an apparent extinction  相似文献   

3.
Aim  The aim of this paper is to investigate the causes of the current restricted distribution of a narrow-range endemic bird species, the Canary Islands stonechat, Saxicola dacotiae .
Location  Eastern islands of the Canary Islands archipelago.
Methods  We compared climatic patterns (temperature and rainfall), habitat and microhabitat structure, food availability during a full annual cycle, and the abundance of native avian competitors and predators inside and outside the species' range. Three study areas, located in similar habitats on nearby islands, were studied: northern Fuerteventura, close to the northern border of the species' range; southern Lanzarote, 22 km from the nearest site occupied by stonechats; and the Lobos islet, 10 km from the nearest occupied site and 2 km from the coast of Fuerteventura.
Results  The cover of suitable habitats (slopes with high cover of large shrubs, stony fields and ravines) and microhabitats (shrubs and boulders) and the abundance of arthropods during the breeding period of Canary Islands stonechats were lower outside than inside the species' range. Temperature, rainfall and the abundance of competitors and predators inside and outside the species' range did not differ significantly.
Main conclusions  Ecological requirements explaining the distribution of the Canary Islands stonechat within its range seem to be the main factor hindering its settlement on nearby islands. Geological and palaeoclimatic processes, as well as past and current human impact, could also have constrained the distribution of this narrow-range endemic bird species.  相似文献   

4.
Aim  Determining to what extent differing distribution patterns are governed by species’ life‐history and resource‐use traits may lead to an improved understanding of the impacts of environmental change on biodiversity. We investigated the extent to which traits can explain distribution patterns in the ladybird fauna (Coleoptera: Coccinellidae) of Great Britain. Location  The British mainland and inshore islands (Anglesey, the Isle of Wight and the Inner Hebrides). Methods  The distributions of 26 ladybird species resident in Britain were characterized in terms of their range size (from 2661 10‐km grid squares across Britain) and proportional range fill (at 10‐ and 50‐km scales). These were assessed relative to five traits (body length, elytral colour pattern polymorphism, voltinism, habitat specificity and diet breadth). The role of phylogenetic autocorrelation was examined by comparing the results of phylogenetic and generalized least‐squares regressions. Results  Diet breadth was the only trait correlated with range size: species with broad diets had larger range sizes than dietary specialists. Range fill was sensitive to recording intensity (a per‐species measure of the mean number of records across occupied squares); models including both recording intensity and range size provided more explanatory power than models incorporating ecological traits alone. Main conclusions  Habitat specificity is often invoked to explain the distribution patterns of species, but here we found diet breadth to be the only ecological correlate of both range fill and range size. This highlights the importance of understanding predator–prey interactions when attempting to explain the distribution patterns of predatory species. Our results suggest that the diet breadth of predatory species is a better correlate of range size and fill than other measures, such as habitat specificity.  相似文献   

5.
Remote oceanic islands have long been recognized as natural models for the study of evolutionary processes involved in diversification. Their remoteness provides opportunities for isolation and divergence of populations, which make islands remarkable settings for the study of diversification. Groups of islands may share a relatively similar geological history and comparable climate, but their inhabitants experience subtly different environments and have distinct evolutionary histories, offering the potential for comparative studies. A range of organisms have colonized the Galápagos Islands, and various lineages have radiated throughout the archipelago to form unique assemblages. This review pays particular attention to molecular phylogenetic studies of Galápagos terrestrial fauna. We find that most of the Galápagos terrestrial fauna have diversified in parallel to the geological formation of the islands. Lineages have occasionally diversified within islands, and the clearest cases occur in taxa with very low vagility and on large islands with diverse habitats. Ecology and habitat specialization appear to be critical in speciation both within and between islands. Although the number of phylogenetic studies is continuously increasing, studies of natural history, ecology, evolution and behaviour are essential to completely reveal how diversification proceeded on these islands.  相似文献   

6.
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.  相似文献   

7.
Aim To identify the biogeographical factors underlying spider species richness in the Macaronesian region and assess the importance of species extinctions in shaping the current diversity. Location The European archipelagos of Macaronesia with an emphasis on the Azores and Canary Islands. Methods Seven variables were tested as predictors of single‐island endemics (SIE), archipelago endemics and indigenous spider species richness in the Azores, Canary Islands and Macaronesia as a whole: island area; geological age; maximum elevation; distance from mainland; distance from the closest island; distance from an older island; and natural forest area remaining per island – a measure of deforestation (the latter only in the Azores). Different mathematical formulations of the general dynamic model of oceanic island biogeography (GDM) were also tested. Results Island area and the proportion of remaining natural forest were the best predictors of species richness in the Azores. In the Canary Islands, area alone did not explain the richness of spiders. However, a hump‐shaped relationship between richness and time was apparent in these islands. The island richness in Macaronesia was correlated with island area, geological age, maximum elevation and distance to mainland. Main conclusions In Macaronesia as a whole, area, island age, the large distance that separates the Azores from the mainland, and the recent disappearance of native habitats with subsequent unrecorded extinctions seem to be the most probable explanations for the current observed richness. In the Canary Islands, the GDM model is strongly supported by many genera that radiated early, reached a peak at intermediate island ages, and have gone extinct on older, eroded islands. In the Azores, the unrecorded extinctions of many species in the oldest, most disturbed islands seem to be one of the main drivers of the current richness patterns. Spiders, the most important terrestrial predators on these islands, may be acting as early indicators for the future disappearance of other insular taxa.  相似文献   

8.
Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south–north gradient across the boreal zone (over 300,000 km2). We compared bird species richness and species‐specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974–1989 and 2006–2010. In addition, we tested how the habitat preference and migration strategy of species explain species‐specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long‐distance migrants declined significantly. Range loss observed in long‐distance migrants is in line with the observed population declines of long‐distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.  相似文献   

9.
Isolated oceanic archipelagos are excellent model systems to study speciation, biogeography, and evolutionary factors underlying the generation of biological diversity. Despite the wealth of studies documenting insular speciation, few of them focused on marine organisms. Here, we reconstruct phylogenetic relationships among species of the marine venomous gastropod genus Conus from the Cape Verde archipelago. This small island chain located in the Central Atlantic hosts 10% of the worldwide species diversity of Conus. Analyses were based on mtDNA sequences, and a novel nuclear marker, a megalin-like protein, member of the low-density lipoprotein receptor gene family. The inferred phylogeny recovered two well-defined clades within Conus. One includes Cape Verde endemic species with larger shells, known as the "venulatus" complex together with C. pulcher from the Canary Islands. The other is composed of Cape Verde endemic and West Africa and Canary Island "small" shelled species. In both clades, nonendemic Conus were resolved as sister groups of the Cape Verde endemics, respectively. Our results indicate that the ancestors of "small" and "large" shelled lineages independently colonized Cape Verde. The resulting biogeographical pattern shows the grouping of most Cape Verde endemics in monophyletic island assemblages. Statistical tests supported a recent radiation event within the "small shell" clade. Using a molecular clock, we estimated that the colonization of the islands by the "small" shelled species occurred relatively close to the origin of the islands whereas the arrival of "large" shelled Conus is more recent. Our results suggest that the main factor responsible for species diversity in the archipelago may be allopatric speciation promoted by the reduced dispersal capacity of nonplanktonic lecithotrophic larvae.  相似文献   

10.
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.  相似文献   

11.
Hughes AL 《Genetica》2010,138(11-12):1271-1276
Because of the high mutation rate of microsatellites, polymorphism at microsatellite loci might be predicted to reflect the effective population size over a time span of about 10,000?years and thus to be associated with biogeographic factors impacting species on that time frame. This prediction was tested by comparing heterozygosity at microsatellite loci from 294 bird species, including 58 species endemic to oceanic islands. Controlling statistically for phylogenetic effects, mean heterozygosity was significantly reduced in oceanic island endemics compared to other species. There was also an effect of current endangerment, statistically independent of the effect of island endemicity. These results support the hypothesis that long-term effective population size can be an important causative factor behind differences among species with respect to microsatellite heterozygosity.  相似文献   

12.
The volcanic archipelago of the Canary Islands, 100 km off the northwestern coast of Africa, harbors 43 endemic species of the mostly circum-Mediterranean spider genus Dysdera (Araneae, Dysderidae). This amounts to approximately one-fourth of all known Dysdera species in an area that represents 0.1% of the range of the genus. In order to address the origin of this extraordinary number of endemic species, the phylogenetic relationships among all the endemic taxa and a sample of 27 continental species were reconstructed. A simultaneous cladistic analysis was performed on 66 morphological characters, 471 bp of the cytochrome oxidase I and 424 bp of the 16S rRNA mitochondrial genes. The preferred most parsimonious tree supports a single origin for most of the endemic species (84%), although this tree is ambiguous regarding the total number of overseas colonizations (allowing a minimum of two and a maximum of four colonization events). Our data suggest that the Canary Islands have been the source of the colonizers of some of the remaining Macaronesian archipelagoes (certainly for the Selvagem Islands and the Cape Verdes and possibly for Madeira); the Azores have been independently colonized by dysderids from the continent. The present study provides a phylogenetic framework for an exceptional case of insular species radiation, an essential tool for unraveling the factors that have promoted this amazing diversification. Species radiations in oceanic archipelagoes are excellent models for the study of speciation processes.  相似文献   

13.
Morphological systematics makes it clear that many non-volant animal groups have undergone extensive transmarine dispersal with subsequent radiation in new, often island, areas. However, details of such events are often lacking. Here we use partial DNA sequences derived from the mitochondrial cytochrome b and 12S rRNA genes (up to 684 and 320 bp, respectively) to trace migration and speciation in Tarentola geckos, a primarily North African clade which has invaded many of the warmer islands in the North Atlantic Ocean. There were four main invasions of archipelagos presumably by rafting. (i) The subgenus Neotarentola reached Cuba up to 23 million years (Myr) ago, apparently via the North Equatorial current, a journey of at least 6000 km. (ii) The subgenus Tarentola invaded the eastern Canary Islands relatively recently covering a minimum of 120 km. (iii) The subgenus Makariogecko got to Gran Canaria and the western Canary Islands 7-17.5 Myr ago, either directly from the mainland or via the Selvages or the archipelago of Madeira, an excursion of 200-1200 km. (iv) A single species of Makariogecko from Gomera or Tenerife in the western Canaries made the 1400 km journey to the Cape Verde Islands tip to 7 Myr ago by way of the south-running Canary current. Many journeys have also occurred within archipelagos, a minimum of five taking place in the Canaries and perhaps 16 in the Cape Verde Islands. Occupation of the Cape Verde archipelago first involved an island in the northern group, perhaps São Nicolau, with subsequent spread to its close neighbours. The eastern and southern islands were colonized from these northern islands, at least two invasions widely separated in time being involved. While there are just three allopatric species of Makariogecko in the Canaries, the single invader of the Cape Verde Islands radiated into five, most of the islands being inhabited by two of these which differ in size. While size difference may possibly be a product of character displacement in the northern islands, taxa of different sizes reached the southern islands independently.  相似文献   

14.

Background

Population genetic theory holds that oceanic island populations are expected to have lower levels of genetic variation than their mainland counterparts, due to founder effect after island colonization from the continent. Cistus monspeliensis (Cistaceae) is distributed in both the Canary Islands and the Mediterranean region. Numerous phylogenetic results obtained in the last years allow performing further phylogeographic analyses in Cistus.

Methodology/Principal Findings

We analyzed sequences from multiple plastid DNA regions in 47 populations of Cistus monspeliensis from the Canary Islands (21 populations) and the Mediterranean basin (26 populations). The time-calibrated phylogeny and phylogeographic analyses yielded the following results: (1) a single, ancestral haplotype is distributed across the Mediterranean, whereas 10 haplotypes in the Canary Islands; (2) four haplotype lineages are present in the Canarian Islands; (3) multiple colonization events across the archipelago are inferred; (4) the earliest split of intraspecific lineages occurred in the Early to Middle Pleistocene (<930,000 years BP).

Conclusions/Significance

The contrasting pattern of cpDNA variation is best explained by genetic bottlenecks in the Mediterranean during Quaternary glaciations, while the Canarian archipelago acted as a refugium of high levels of genetic diversity. Active colonization across the Canarian islands is supported not only by the distribution of C. monspeliensis in five of the seven islands, but also by our phylogeographic reconstruction in which unrelated haplotypes are present on the same island. Widespread distribution of thermophilous habitats on every island, as those found throughout the Mediterranean, has likely been responsible for the successful colonization of C. monspeliensis, despite the absence of a long-distance dispersal mechanism. This is the first example of a plant species with higher genetic variation among oceanic island populations than among those of the continent.  相似文献   

15.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

16.
Aim To reassess the relationships between Tarentola geckos from the Cape Verde Islands by including specimens from all islands in the range. To determine the variation within forms by sequencing over 400 specimens, thereby allowing the discovery of cryptic forms and resolving some of the issues raised previously. This extensive sampling was also used to shed light on distributions and to explain genetic diversity by comparing the ages and ecological and geological features of the islands (size, elevation and habitat diversity). Location The Cape Verde Islands: an oceanic archipelago belonging to the Macaronesian biogeographic region, located around 500 km off Senegal. Methods A total of 405 new specimens of Tarentola geckos were collected from nine islands with very different geological histories, topography, climate and habitats. Mitochondrial cytochrome b (cyt b) gene and 12S rRNA partial sequences were obtained and analysed using phylogenetic methods and networks to determine molecular diversity, demographic features and phylogeographic patterns. Results The phylogenetic relationships between all known forms of Cape Verdean Tarentola specimens were estimated for the first time, the relationships between new forms were assessed and previously hypothesized relationships were re‐examined. Despite the large sample size, low intraspecific diversity was found using a 303‐bp cyt b fragment. Star‐like haplotype networks and statistical tests suggest the past occurrence of a rapid demographic and geographical expansion over most of the islands. Genetic variability is positively correlated with size, elevation and habitat diversity of the islands, but is not linearly related to the age of the islands. Biogeographical patterns have, in general, high concordance with phylogenetic breaks and with the three eco‐geographical island groups. Volcanism and habitat diversity, both tightly linked with island ontogeny, as postulated by the general dynamic model of oceanic island biogeography, as well as present and historical size of the islands appear to be the main factors explaining the genetic diversity of this group. Main conclusions The Tarentola radiation was clarified and is clearly associated with the geological and ecological features of the islands. Two factors may account for the low intraspecific variation: (1) recent volcanic activity and high ecological stress, and (2) poor habitat diversity within some islands. More studies are needed to align taxonomy with phylogenetic relationships, whereas GIS modelling may help to predict precise species distributions.  相似文献   

17.
Feral cats have been directly responsible for the extinction of numerous species on islands worldwide, including endemic species of mammals, birds and reptiles. The diet of feral cats in the main habitats of the Canary Islands, as generally occurred on oceanic islands, is mainly composed of introduced mammals, and native species of birds, reptiles and insects. The impact of feral cat upon the endangered species was assessed by evaluating their relative abundance in the cats’ diet and by considering their current conservation status. A total of 68 different preys were identified at species level in all studies carried out in the Canary Islands (5 mammals, 16 birds, 15 reptiles and 32 invertebrates). From all the species preyed by feral cats in the Canary Islands, only four of them are considered threatened by the IUCN Red List of Threatened Species: one endemic bird Saxicola dacotiae and three endemic giant lizards, Gallotia simonyi, Gallotia intermedia, and Gallotia gomerana. Although some efforts on management control have been carried out, it is necessary to enforce these conservation activities on those areas of Tenerife, La Gomera and El Hierro where giant lizards are still present. Furthermore some local areas where endangered bird species are highly predated should be protected. Nevertheless, it is important to take into account the presence of other introduced species such as rats, mice or rabbits in order to avoid problems derived from the hyperpredation process and mesopredator release effect.  相似文献   

18.
19.
Oceanic islands emerge lifeless from the seafloor and are separated from continents by long stretches of sea. Consequently, all their species had to overcome this stringent dispersal filter, making these islands ideal systems to study the biogeographic implications of long‐distance dispersal (LDD). It has long been established that the capacity of plants to reach new islands is determined by specific traits of their diaspores, historically called dispersal syndromes. However, recent work has questioned to what extent such dispersal‐related traits effectively influence plant distribution between islands. Here we evaluated whether plants bearing dispersal syndromes related to LDD – i.e. anemochorous (structures that favour wind dispersal), thalassochorous (sea dispersal), endozoochorous (internal animal dispersal) and epizoochorous (external animal dispersal) syndromes – occupy a greater number of islands than those with unspecialized diaspores by virtue of their increased dispersal ability. We focused on the native flora of the lowland xeric communities of the Canary Islands (531 species) and on the archipelago distribution of the species. We controlled for several key factors likely to affect the role of LDD syndromes in inter‐island colonization, namely: island geodynamic history, colonization time and phylogenetic relationships among species. Our results clearly show that species bearing LDD syndromes have a wider distribution than species with unspecialized diaspores. In particular, species with endozoochorous, epizoochorous and thalassochorous diaspore traits have significantly wider distributions across the Canary archipelago than species with unspecialized and anemochorous diaspores. All these findings offer strong support for a greater importance of LDD syndromes on shaping inter‐island plant distribution in the Canary Islands than in some other archipelagos, such as Galápagos and Azores.  相似文献   

20.
Aim  To identify the factors that contribute to variation in abundance (population density), and to investigate whether habitat breadth and diet breadth predict macroecological patterns in a suborder of passerine birds (Meliphagoidea).
Location  Australia (including Tasmania).
Methods  Mean abundance data were collated from site surveys of bird abundance (the Australian Bird Count); range size and latitudinal position data from published distribution maps; and body mass and diet breadth information from published accounts. A diversity index of habitats used (habitat breadth) was calculated from the bird census data. We used bivariate correlation and multiple regression techniques, employing two phylogenetic comparative methods: phylogenetic generalized least squares and independent contrasts.
Results  Body mass and latitude were the only strong predictors of abundance, with larger-bodied and lower-latitude species existing at lower densities. Together, however, body mass and latitude explained only 11.1% of the variation in mean abundance. Range size and habitat breadth were positively correlated, as were diet breadth and body mass. However, neither range size, nor habitat breadth and diet breadth, explained patterns in abundance either directly or indirectly.
Main conclusions  Levels of abundance (population density) in meliphagoid birds are most closely linked to body mass and latitudinal position, but not range size. As with many other macroecological analyses, we find little evidence for aspects of niche breadth having an effect on patterns of abundance. We hypothesize that evolutionary age may also have a determining effect on why species tend to be rarer (less abundant) in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号