首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, development of perimicrovillar membrane (PMM) from midgut cells of starved and fed Eurygaster integriceps (Hemiptera: Scutelleridae) was studied. Three different approaches, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), marker enzymes of the PMMs (α-glucosidase), perimicrovillar space (aminopeptidase), and microvillar membranes (β-glucosidase) were used. Activities of these enzymes were remarkably low in the starved insects. Moreover, microscopic observations revealed that PMM is not present in the starved insect. Activities of enzymatic markers increased at 5 h postfeeding, and TEM and SEM observations showed the formation of PMM as well as migration of double-membrane vesicles from center of the columnar cell to the cell apex. The highest PMM was observed at 20 h postfeeding which at this time marker enzyme activity, such as α-glucosidase activity, was high, too. Thus, at 20 h postfeeding, PMM system was evident and epithelial cells were completely covered by PMM system. After 20 h postfeeding, presence of the fine holes in PMM started to be seen and at 40 h post-feeding, observation showed degradation of PMM system. Thus, it could be concluded that PMM in E. integriceps is secreted by epithelial cell membrane when needed and its secretion and formation is regulated by feeding. This system was not present in the starved insects as its development takes place at 5 h postfeeding.  相似文献   

2.
The effects of blood components, nerve-cord severance, and ecdysone therapy on the posterior midgut epithelial cells of 5th-instar Rhodnius prolixus nymphs 10 days after feeding were analyzed by transmission electron microscopy. Cutting the nerve-cord of the blood-fed insects partially reduced the development of microvilli and perimicrovillar membranes (PMM), and produced large vacuoles and small electrondense granules; insects fed on Ringer's saline diet exhibited well developed microvilli and low PMM production; swolled rough endoplasmatic reticulum and electrondense granules; Ringer's saline meal with ecdysone led to PMM development, glycogen particles, and several mitochondria in the cytoplasm; epithelial cells of the insects fed on Ringer's saline meal whose nerve-cord was severed showed heterogeneously distributed microvilli with reduced PMM production and a great quantity of mitochondria and glycogen in the cytoplasm; well developed microvilli and PMM were observed in nerve-cord severed insects fed on Ringer's saline meal with ecdysone; Ringer's saline diet containing hemoglobin recovered the release of PMM; and insects fed on human plasma showed slightly reduced PMM production, although the addition of ecdysone in the plasma led to a normal midgut ultrastructural organization. We suggest that the full development of microvilli and PMM in the epithelial cells depends on the abdominal distension in addition to ingestion of hemoglobin, and the release of ecdysone.  相似文献   

3.
Triatoma vitticeps (Stal, 1859) is a hematophagous Hemiptera that, although being considered wild, can be found in households, being a potential Chagas’ disease vector. This work describes the histology and ultrastructure of the midgut of T. vitticeps under different starvation periods. Fifteen adults of both sexes starved for 3, 7, 20 and 25 days were studied. In general, digestive cells had apical microvilli, basal plasma membrane infoldings and central nucleus. The perimicrovillar membrane was found in all insects examined. Digestive cells of anterior midgut had lipid droplets, glycogen granules, developed basal labyrinth associated with mitochondria suggesting their role in nutrient storage and in fluid and ion transport. The cells of median and posterior regions of the midgut were rich in rough endoplasmic reticulum, lysosomes, vesicles and granules with different electron-densities. Moreover, cells of the posterior portion of the midgut had hemozoyn granules and mitochondria in the apical cytoplasm close to microvilli, suggesting their role in blood digestion and active nutrient absorption. The midgut of T. vitticeps showed differences in digestive cells associated with the time after feeding, and the increase of vesicles amount in long starvation periods, which suggests enzyme storage, which is readily used after a blood meal.  相似文献   

4.
Hemipterans and thysanopterans (Paneoptera: Condylognatha) differ from other insects by having an intestinal perimicrovillar membrane (PMM) which extends from the base of the microvilli to the intestinal lumen. The development and composition of the PMM in hematophagous Reduviidae depend on factors related to diet. The PMM may also allow the human parasite Trypanosoma cruzi, the etiological agent of human Chagas Disease, to establish and develop in this insect vector. We studied the PMM development in the Mexican vector of Chagas Disease, Triatoma (Meccus) pallidipennis. We describe changes in the midgut epithelial cells of insects in response to starvation, and at different times (10, 15 and 20 days) after bloodfeeding. In starved insects, the midguts showed epithelial cells closely connected to each other but apparently free of PMM with some regions being periodic acid–Schiff (PAS–Schiff) positive. In contrast, the PMM was evident and fully developed in the midgut region of insects 15 days after feeding. After this time, the PMM completely covered the microvilli and reached the midgut lumen. At 15 days following feeding the labeled PAS–Schiff increased in the epithelial apex, suggesting an increase in carbohydrates. Lectins as histochemical reagents show the presence of a variety of glycoconjugates including mannose, glucose, galactosamine, N-acetyl-galactosamine. Also present were N-acetyl-glucosamine and sialic acid which contribute to the successful establishment and replication or T. cruzi in its insect vectors. By means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the formation and structure of the PMM is confirmed at 15 days post feeding. Our results confirmed the importance of the feeding processes in the formation of the PMM and showed the nature of the biochemical composition of the vectors' intestine in this important Mexican vector of Chagas disease.  相似文献   

5.
A morphological study of the midgut of Lutzomyia intermedia, the primary vector of cutaneous leishmaniasis, in southeast Brazil, was conducted by light, scanning and transmission electron microscopy. The midgut is formed by a layer of epithelium of columnar cells on a non-cellular basal lamina, under which there is a musculature, which consists of circular and longitudinal muscular fibers. A tracheolar network is observed surrounding and penetrating in the musculature. Females were examined 12, 24, 48, 72 h and 5 days following a blood meal and were analyzed comparatively by transmission electron microscopy with starved females. In starved females, the epithelium of both the anterior and posterior sections of the midgut present whorl shaped rough endoplasmic reticulum. The posterior section does not present well-developed cellular structures such as mitochondria. Observations performed at 12, 24, 48 and 72 h after the blood meal showed morphological changes in the cellular structures in this section, and the presence of the peritrophic matrix up to 48 h after the blood meal. Digestion is almost complete and a few residues are detected in the lumen 72 h after blood feeding. Finally, on the 5th day after the blood meal all cellular structures present the original feature resembling that seen in starved sand flies. Morphometric data confirmed the morphological observations. Mitochondria, nuclei and microvilli of midgut epithelial cells are different in starved and blood fed females. The mitochondria present a similar profile in the epithelium of both the anterior and posterior section of the midgut, with higher dimension in starved females. The cell microvilli in the posterior section of the midgut of starved females are twice the size of those that had taken a blood meal. We concluded that there are changes in the midgut cellular structures of L. intermedia during the digestion of blood, which are in agreement with those described for other hematophagous diptera.  相似文献   

6.
Hemipterans are characterized by the absence of the peritrophic membrane, an anatomical structure that envelopes the food bolus in the majority of insects. However, the microvillar membranes of many hemipteran midgut cells are not in direct contact with the food bolus, due to the existence of the so-called perimicrovillar membrane (PMM), which covers the microvilli extending into the gut lumen with dead ends. alpha-Glucosidase is a biochemical marker for PMM in the seed sucker bug Dysdercus peruvianus (Heteroptera: Pyrrhocoridae). In this article, we report that adults of the major hemipteran infra-orders (Sternorrhyncha, Auchenorrhyncha, and Heteroptera) have PMM and a major membrane bound alpha-glucosidase, which has properties similar to those of the D. peruvianus enzyme. A polyclonal antibody raised against the enzyme of D. peruvianus recognized the enzymes present in PMM from the above-mentioned hemipteran groups. The same antibody was also able of recognizing perimicrovillar alpha-glucosidase from thrips. No PMM nor membrane-bound alpha-glucosidase were found in Psocoptera and Phthiraptera midguts. This suggests that PMM and PMM-bound-alpha-glucosidase are widespread among insects of the order Hemiptera and of the sister order Thysanoptera. The data support the hypothesis that PMM may have originated in the Condylognatha (Paraneopteran taxon including Hemiptera and Thysanoptera) ancestral stock and are associated with plant sap feeding.  相似文献   

7.
The midgut epithelium of larval and early postlarval brown shrimp has been studied with light and electron microscopy. Ultrastructurally the features of the midgut do not change during these stages of development. On the basis of electron density, two epithelial cell types can be distinguished, and these are referred to as light and dark cells. The dark cells contain more rough endoplasmic reticulum and more free ribosomes than the light cells. Mitochondria in the dark cells have a matrix which is less electron dense than the mitochondrial matrix of the light cells. Both cell types have a microvillous border with a surface coat. The microvilli lack microfilaments within their core, and a terminal web is not differentiated in the stages examined. Tubular smooth endoplasmic reticulum is abundant in the basal portions of the cells. Electron dense, membrane bound vesicles are consistently seen in association with the Golgi apparatus, apical cell surface, and gut lumen and therefore are believed to be secretory granules. Cells in the anterior portion of the midgut often contain very large lipid droplets in the cytoplasm.  相似文献   

8.
Scanning and transmission electron microscopy are used to reveal the internal anatomy and ultrastructure of the cardia which is the source of the triple layered peritrophic membrane in the blowfly Lucilia cuprina. Within the cardia, rings of secretory cells (formation zones) and non-secretory tissue (valvula cardiaca) interlock to secrete and mould the layers of membrane. Formation zone cells have abundant rough endoplasmic reticulum, Golgi and secretory vesicles. A portion of midgut just posterior to the formation zone is covered by close-packed microvilli connected by septate-like junctions. The cuticle-lined valvula cardiaca is rich in smooth endoplasmic reticulum, glycogen and microtubules. The oesophageal cuticle is unusual in containing tubular structures. The ultrastructural features of the separate components of the cardia are discussed in terms of their secretory and non-secretory roles; modified midgut cells secrete chitin and protein whereas modified foregut tissue (valvula cardiaca) appears to be adapted to provide structural integrity (extensive junctions, microtubules), movement (muscles, possibly microtubules), a store of energy (glycogen deposits) and possibly a lipidic secretion (from smooth endoplasmic reticulum) to lubricate the passage of the membranes.  相似文献   

9.
The midgut ultrastructure of raisin- and blood-fed female mosquitoes, Culex tarsalis Coquillett, was examined. The raisin-fed midgut is characterized by: (1) large nuclei, (2) small mitochondria, (3) short segments of rough endoplasmic reticulum, (4) rough endoplasmic reticular vesicles in the posterior midgut only, and (5) increased autophagic activity with age. Blood feeding elicits drastic changes in midgut epithelial structures: (1) nuclei are smaller, (2) mitochondria are much enlarged, (3) rough endoplasmic reticular vesicles disappear, (4) rough endoplasmic reticular whorls appear, (5) residual lyosomal figures are abundant, and (6) an intercellular accumulation of an electron-opaque material is noted. The significance of rough endoplasmic reticular whorls and vesicles in bloodmeal digestion is discussed. In addition, the concept of a functional host ‘gut barrier’ to infection by pathogens is examined as related to a possible by-pass mechanism.  相似文献   

10.
Studies were carried out to identify proteins involved in the interface of Trypanosoma cruzi with the perimicrovillar membranes (PMM) of Rhodnius prolixus. Video microscopy experiments demonstrated high level of adhesion of T. cruzi Dm 28c epimastigotes to the surface of posterior midgut cells of non-treated R. prolixus. The parasites however were unable to attach to gut cells obtained from decapitated or azadirachtin-treated insects. The influence of carbohydrates on the adhesion to insect midgut was confirmed by inhibition of parasite attachment after midgut incubation with N-acetylgalactosamine, N-acetylmannosamine, N-acetylglucosamine, D-galactose, D-mannose or sialic acid. We observed that hydrophobic proteins in the surface of epimastigotes bind to polypeptides with 47.7, 45.5, 44, 43, 40.5, 36, 31 and 13kDa from R. prolixus PMM and that pre-incubation of lectins specifically inhibited binding to 31, 40.5, 44 and 45.5kDa proteins. We suggest that glycoproteins from PMM and hydrophobic proteins from epimastigotes are important for the adhesion of the parasite to the posterior midgut cells of the vector.  相似文献   

11.
Summary Lamellar stacks of cisternae regularly spaced and bound to each other by fine filaments are observed in the apex of midgut cells of Aeshna cyanea. These cisternae are connected with the rough endoplasmic reticulum but are devoid of ribosomes except on their terminal sacs. Their location and their structure, quite different in fed and starved animals, suggest that they are involved in intracellular transport.  相似文献   

12.
利用透射显微镜(TEM)观察亚洲玉米螟Ostrinia furnacalis (Guenée)幼虫取食了表达Cry1Ab杀虫蛋白的转Bt基因玉米心叶组织后中肠的组织病理变化, 以探讨转Bt基因玉米对亚洲玉米螟的致病机理, 为其合理、安全和持续利用提供理论依据。结果表明:亚洲玉米螟取食Bt玉米后中肠细胞及其细胞器发生了明显的病变。取食Bt玉米12 h后中肠细胞开始病变, 首先微绒毛脱落、内质网开始肿胀, 24 h后内质网肿胀、增多, 杯状细胞杯腔增大, 48 h后微绒毛大量脱落, 细胞开始空泡化, 随着取食时间的增加, 细胞空泡化程度加剧, 在感染前期细胞间的病变程度差异较大。微绒毛脱落、内质网肿胀断裂是在多数取食Bt玉米的亚洲玉米螟中肠细胞发生的普遍病变。由此表明, 人工修饰的Cry1Ab基因导入到玉米染色体组中所表达的杀虫蛋白可使玉米螟幼虫中肠细胞发生病变, 最终导致其死亡。  相似文献   

13.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

14.
Summary Enzyme assays and morphological and histological studies show that the opaque zone midgut cells of the haematophagous fly Stomoxys calcitrans are responsible for the production of proteolytic digestive enzymes and that these are secreted into the gut lumen via membrane bound vesicles (MBV). The secretory cycle can be summarized as follows; initially the rough endoplasmic reticulum is stacked and the apices of the cells are packed with MBV. This is followed by a period of release characterized first by cytoplasmic extrusions containing high densities of MBV, then by microvesiculation of the microvilli combined with a progressive distribution of rough endoplasmic reticulum and lightening of the cellular cytoplasm. Glycogen appears in the cells at this stage and is gradually lost as the rough endoplasmic reticulum becomes stacked once more and the numbers of MBV build up again. The cycle which occurs regularly and synchronously in the cells of the zone repeats itself many times up to the completion of digestion of the blood meal. The secretory cycle is discussed with reference to activity in other secretory tissues.The author is indebted to the Science Research Council for financial support  相似文献   

15.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

16.
Basophilic cells in the guts of female ticks are derived from the basal remnants of type 2 secretory cells. As viewed by electron microscopy, these cells have microvilli uniformly distributed on the luminal surface, but they lack the abundant pinocytotic vesicles and lysosomes characteristic of digest cells. The cytoplasm is filled with well organized rough endoplasmic reticulum, Golgi complexes and secretory granules. Infoldings of a basal labyrinth extend the contact of the cell with the underlying haemolymph, and there are many mitochondria in the cell processes between folds. This morphology appears to fit the cell for functioning in active water transport across the gut wall. Subsequent to a final rapid phase of engorgement, the basophilic cell reorganizes its cisternae of rough endoplasmic reticulum into whorls and parallel arrays and resumes a secretory role.  相似文献   

17.
A system for study and measurement of the attachment in vitro of exogenous polyribosomes to membranes has been presented. Its main features are use of low temperature, post-microsomal supernatant, pyrophosphate and citric acid to remove ribosomes from the surface of rough endoplasmic reticulum, and a method for quantitative separation of unattached from membrane-associated polyribosomes. The following were found. (1) Rough endoplasmic reticulum, from which ribosomes had been removed by treatment with pyrophosphate and citrate, bound over 50% of added polyribosomes, whereas the untreated (or control) rough and smooth endoplasmic reticulum and the smooth endoplasmic reticulum treated with pyrophosphate-citrate did not bind polyribosomes. (2) The polyribosome-binding capacity of rough endoplasmic reticulum stripped of its ribosomes decayed upon storage of the membranes at 0-4 degrees C. The half-life of this decay was about 6 days whereas that of the polyribosome-binding capacity of hepatoma stripped rough endoplasmic reticulum was about 1.5 days. (3) Preparations of stripped rough endoplasmic reticulum after reassociation with polyribosomes in vitro were quite similar to preparations of native rough endoplasmic reticulum as viewed with the electron microscope. Evidence is presented to support the contention that association of polyribosomes with membranes was the result of polyribosomal reattachment to the membranes rather than trapping of the polyribosomes between vesicles of the membranes.  相似文献   

18.
Oligovillous cells of the epidermis: sensory elements of lamprey skin   总被引:1,自引:0,他引:1  
M. Whitear    E. B. Lane 《Journal of Zoology》1983,199(3):359-384
The epidermis cf Lampetra spp. contains several kinds of differentiated cell; one innervated variety is characterized by bearing a group of large apical microvilli which project from the surface of the skin. In Lampetra planeri such oligovillous cells are numerous under the oral hood of the ammocoete larva, on the papillae fringing the dorsal fin and bordering the gill vents of the adult, and at the tip of the male genital papilla. Elsewhere on the head, body and fins they are present but more scattered, which appears to be the condition also in adult anadromous Lampetra fluviatilis . There are differences in the number and dimensions of the microvilli found on oligovillous cells, but each is supported by a stout core of actin filaments extending a variable distance down into the cytoplasm. Under the apex of the cell there are microtubules and numerous vesicles which are thought to be concerned in the renewal of the membrane on the microvilli. Beside and proximal to the nucleus is a system of channels of rough endoplasmic reticulum, and a stack of membranous cisternae which appears to have been derived from the endoplasmic reticulum. A nerve fibre is associated with the base of the cell which is indented by a spur-like process from the neurite. Typical "synaptic vesicles" are not found in the cell but irregular vesicular or canalicular profiles are associated with the cell membrane adjoining the neurite spur. The space between the cell and neurite membranes contains extracellular material with a characteristic appearance of prickle-like densities on the cell side meeting densities on the neurite membrane. Variations in the cytology of oligovillous cells can be explained in terms of a cycle of development and de-differentiation. Certain cells with vesicles throughout the cytoplasm and with a narrow apex without microvilli are interpreted as degenerate examples. The oligovillous cells are thought to be chemosensory receptors.  相似文献   

19.
Summary By use of the artificial substrate leucyl--naphthylamide, aminopeptidase was localised in the midgut cells of the haematophagous insect Rhodnius prolixus before and at various times up to 25 days after a meal of rabbit blood. The enzyme was primarily associated with the membranes of the microvilli, with extracellular membrane layers and with the lysosomes of the midgut cells. Aminopeptidase activity was also detected on the rough endoplasmic reticulum and at the periphery of intracellular storage vesicles. The absence of aminopeptidase on the microvilli of the crop supports the conclusion that the crop is not involved in the digestion of blood-meal proteins and that protein digestion is restricted to the intestine. The sites of localisation are in accordance with models for the spatial separation of digestive enzymes in the midgut of several non-haematophagous insects, and this suggests that aminopeptidase plays a major role in the terminal digestion of the blood meal. The changes in enzyme localisation during the digestive period correlate with previously described cycles of digestive-enzyme activity and changes in midgut ultrastructure. A model for blood protein digestion in R. prolixus is described.  相似文献   

20.
钟海英  张雅林  魏琮 《昆虫学报》2020,63(4):421-432
【目的】本研究通过合哑蝉Karenia caelatata成虫消化道的形态学、组织学和超微结构研究,进一步了解蝉科(Cicadidae)代表种类的消化道形态和功能分化。【方法】利用光学显微镜和透射电子显微镜技术,对合哑蝉雄成虫消化道的整体形态以及食道、滤室(中肠前端及后端、马氏管基部、后肠基部)、滤室外中肠(锥形体、中肠环)、后肠(回肠、直肠)的一般形态和超微结构进行了详细观察,同时对滤室的组织结构进行了研究。【结果】结果表明,合哑蝉消化道由食道、滤室、滤室外中肠及后肠组成。食道狭长,被有上表皮和内表皮。中肠前端、中肠后端、马氏管基部以及后肠基部被一肌肉鞘包围形成滤室构造。组成中肠前端和后端的细胞基膜高度内褶,顶端的微绒毛发达。中肠后端分布许多线粒体和高电子密度的分泌颗粒。滤室外的中肠包括膨大的锥形体、中肠环。其中,锥形体由两种细胞组成;中肠环分为前、中、后3个不同的区段。前中肠细胞包含大量的分泌颗粒、线粒体、粗面内质网和溶酶体;中中肠细胞含有分泌颗粒;后中肠细胞包括许多低电子密度的分泌颗粒和滑面内质网。类铁蛋白颗粒零星分布于中肠环的前、中区段。组成锥形体和中肠环前端的细胞顶端微绒毛被丝状物质覆盖。后肠被有一层表皮。食道、中肠环中段、直肠细胞中含有微生物。【结论】本研究获得的合哑蝉消化道形态、组织结构和超微结构方面的信息为其功能分化研究提供了重要信息。同时,相关微生物的发现为进一步探讨共生菌与蝉总科昆虫的协同进化提供了信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号