首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In an earlier paper (Morse et al., J. Virol 24:231--248, 1977) we reported on the provenance of the DNA sequences in 26 herpes simplex virus type 1 (HSV-1) X HSV-2 recombinants as determined from analyses of their DNAs with at least five restriction endonucleases. This report deals with the polypeptides specified by the recombinants and by their HSV-1 and HSV-2 parents. We have identified (i) the corresponding HSV-1 and HSV-2 polypeptides with molecular weights ranging from 20,000 to more than 200,000, (ii) the polypeptides that undergo rapid post-translational processing, and (iii) polypeptides that vary intratypically in apparent molecular weight. By comparing the segregation patterns of the polypeptides with those of the DNA sequence of the recombinants, we have mapped the templates specifying 26 polypeptides and several viral functions on the physical map of HSV DNA. The data show the following: (i) alpha polypeptides map at the termini of the L and S components of the HSV DNA. Although alpha ICP 27 maps entirely within the reiterated region of the L component, the template for alpha ICP 4 may lie only in part within the reiterated sequences of the S component. Of note is the finding that cells infected with a recombinant that contains both HSV-1 and HSV-2 DNA sequences in the S component produced alpha ICP 4 of both HSV-1 and HSV-2. (ii) Templates specifying beta and gamma polypeptides map in the L component and appear to be randomly distributed. (iii) Thymidine kinase and resistance to phosphonoacetic acid mapped in the L component. In addition, we have taken advantage of the rapid inhibition of host protein synthesis characteristic of HSV-2 infections and syncytial plaque morphology to also map the template(s) responsible for these functions in the L component. The implications of the template arrangement in HSV DNA are discussed.  相似文献   

2.
The genome structures of herpes simplex virus type 1 (HSV-1)/HSV-2 intertypic recombinants have been previously determined by restriction endonuclease analysis, and these recombinants and their parental strains have been employed to demonstrate that mutations within the HSV DNA polymerase locus induce an altered HSV DNA polymerase activity, exhibiting resistance to three inhibitors of DNA polymerase. The viral DNA polymerases induced by two recombinants and their parental strains were purified and shown to possess similar molecular weights (142,000 to 144,000) and similar sensitivity to compounds which distinguish viral and cellular DNA polymerases. The HSV DNA polymerases induced by the resistant recombinant and the resistant parental strain were resistant to inhibition by phosphonoacetic acid, acycloguanosine triphosphate, and the 2',3'-dideoxynucleoside triphosphates. The resistant recombinant (R6-34) induced as much acycloguanosine triphosphate as did the sensitive recombinant (R6-26), but viral DNA synthesis in infected cells and the viral DNA polymerase activity were not inhibited. The 2',3'-dideoxynucleoside-triphosphates were effective competitive inhibitors for the HSV DNA polymerase, and the Ki values for the four 2',3'-dideoxynucleoside triphosphates were determined for the four viral DNA polymerases. The polymerases of the resistant recombinant and the resistant parent possessed a much higher Ki for the 2',3'-dideoxynucleoside triphosphates and for phosphonoacetic acid than did the sensitive strains. A 1.3-kilobase-pair region of HSV-1 DNA within the HSV DNA polymerase locus contained mutations which conferred resistance to three DNA polymerase inhibitors. This region of DNA sequences encoded for an amino acid sequence of 42,000 molecular weight and defined an active center of the HSV DNA polymerase enzyme.  相似文献   

3.
Mutations in the alkaline nuclease gene of herpes simplex type 1 (HSV-1) (nuc mutations) induce almost wild-type levels of viral DNA; however, mutant viral yields are 0.1 to 1% of wild-type yields (L. Shao, L. Rapp, and S. Weller, Virology 195:146-162, 1993; R. Martinez, L. Shao, J.C. Bronstein, P.C. Weber, and S. Weller, Virology 215:152-164, 1996). nuc mutants are defective in one or more stages of genome maturation and appear to package DNA into aberrant or defective capsids which fail to egress from the nucleus of infected cells. In this study, we used pulsed-field gel electrophoresis to test the hypothesis that the defects in nuc mutants are due to the failure of the newly replicated viral DNA to be processed properly during DNA replication and/or recombination. Replicative intermediates of HSV-1 DNA from both wild-type- and mutant-infected cells remain in the wells of pulsed-field gels, while free linear monomers are readily resolved. Digestion of this well DNA with restriction enzymes that cleave once in the viral genome releases discrete monomer DNA from wild-type virus-infected cells but not from nuc mutant-infected cells. We conclude that both wild-type and mutant DNAs exist in a complex, nonlinear form (possibly branched) during replication. The fact that discrete monomer-length DNA cannot be released from nuc DNA by a single-cutting enzyme suggests that this DNA is more branched than DNA which accumulates in cells infected with wild-type virus. The well DNA from cells infected with wild-type and nuc mutants contains XbaI fragments which result from genomic inversions, indicating that alkaline nuclease is not required for mediating recombination events within HSV DNA. Furthermore, nuc mutants are able to carry out DNA replication-mediated homologous recombination events between inverted repeats on plasmids as evaluated by using a quantitative transient recombination assay. Well DNA from both wild-type- and mutant-infected cells contains free U(L) termini but not free U(S) termini. Various models to explain the structure of replicating DNA are considered.  相似文献   

4.
Recombinants between temperature-sensitive mutants of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) were constructed. Using restriction endonucleases, we analyzed the genome composition of 17 intertypic recombinants and detected crossovers in every region of the genome. The virion DNA of one recombinant appeared to be largely "frozen" in two of the four possible genome arrangements of HSV. Knowledge of the genome structures of recombinants enabled us to physically map immediate early polypeptides. We present evidence that the immediate early polypeptide Vmw IE 110 of HSV-1 and its functionally equivalent polypeptide, Vmw IE 118, of HSV-2 may map in the repetitive sequences bounding the long unique region of HSV.  相似文献   

5.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

6.
Infection of cells with herpes simplex virus type 1 (HSV-1) induces high levels of deoxypyrimidine triphosphatase. The majority of the enzyme activity is found in infected cell nuclei. A similar activity is induced by HSV type 2 (HSV-2) which, in contrast to the HSV-1 enzyme, fractionates to more than 99% in the soluble cytoplasmic extract. Of a series of temperature-sensitive mutants of HSV-1 studied, only the immediate-early mutants in complementation group 1-2 (strain 17 mutants tsD and tsK and strain KOS mutant tsB2) induced reduced levels of triphosphatase at nonpermissive temperature. Of a series of temperature-sensitive mutants of HSV-2 strain HG52, ts9 and ts13 failed to induce wild-type levels of the enzyme at nonpermissive temperature; ts9 was the most defective mutant with regard to triphosphatase expression of both herpes simplex virus serotypes. After shift-up from permissive to nonpermissive temperature, triphosphatase activity in cells infected with ts9 decreased rapidly, whereas all other mutants continued to exhibit enzyme levels comparable with controls kept at the permissive temperature. The type 1-specific nuclear expression of the triphosphatase was mapped physically by the use of HSV-1 x HSV-2 intertypic recombinants, based on enzyme levels different by more than two orders of magnitude found in nuclei of HSV-1- and HSV-2-infected cells. The locus for the type-specific expression maps between 0.67 and 0.68 fractional length on the HSV genome.  相似文献   

7.
Temperature-sensitive (ts) mutants in a number of complementation groups of herpes simplex virus type 1 (HSV-1) are deficient in DNA polymerase induction at the restrictive temperature. Twenty-two mutants in 15 complementation groups were tested for sensitivity to phosphonoacetate (PAA), a compound that inhibits HSV replication in vivo and the DNA polymerase in vitro. One mutant, tsD9, was resistant to PAA (Pr), whereas all others were sensitive. Revertants of tsD9 to the ts+ phenotype simultaneously lost PAA resistance. Additional Pr mutants were isolated from ts mutants belonging to several complementation groups of HSV-1. Double mutants (ts Pr phenotype) were used in three-factor recombination analyses to locate the PAA locus on the genetic map at a position indistinguishable from the ts lesion in tsD9. In all cases, resistance or sensitivity to PAA in vivo was correlated with resistance or sensitivity of DNA polymerase in vitro. These data are compatible with the temperature-sensitive lesion of tsD9 and the determinant of PAA sensitivity both residing in the structural gene for DNA polymerase.  相似文献   

8.
Human cytotoxic T cell (CTL) clones specific for herpes simplex virus (HSV) type 1- and type 2-infected cells were generated and were analyzed with regard to the viral glycoproteins they recognize on autologous HSV-infected cells. By use of target cells infected with wild-type HSV strains, a gC deletion mutant of HSV-1, and HSV-1 X HSV-2 intertypic recombinants, some HSV-1-specific CTL clones were found to be directed against L region-encoded gA/B-1, and others against S region-encoded glycoproteins (gD-1 or gE-1). Some HSV-2-specific clones were found to be directed against L region-encoded gC-2, whereas others were directed against S region-encoded glycoproteins (gD-2, gE-2, or gG). These findings provide direct evidence that several HSV glycoproteins that are expressed on the surface of HSV-infected cells serve as recognition structures for human HSV-specific CTL.  相似文献   

9.
Origin of two different classes of defective HSV-1 Angelotti DNA.   总被引:17,自引:1,他引:16       下载免费PDF全文
During serial passages of Herpes simplex virus (HSV) at high multiplicity of infection, virions containing defective viral DNA accumulate in the progeny. The defective DNA molecules are made up by repeats of restricted portions of the standard viral genome. Two different classes of defective DNA derived from HSV-1 Angelotti (ANG) in independent series of high MOI-passages were studied. The nucleotide sequences contained in the defective DNA were localized on the parental viral genome. One of the two classes contained sequences from non-contiguous sites mapping in unique and in redundant regions of the parental DNA, whereas the second class apparently originates from the S-terminal redundant region of the parental DNA. The localization of defective DNA sequences was complicated by the fact that there exists sequence homology between the S-terminal redundancy and various unique DNA sequences in the L-segment of the HSV-1 ANG genome.  相似文献   

10.
11.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

12.
Herpes simplex virus (HSV) DNA polymerase (Pol) mutations can confer resistance to all currently available antiherpetic drugs. However, discrimination between mutations responsible for drug resistance and those that are part of viral polymorphism can be difficult with current methodologies. A new system is reported for rapid generation of recombinant HSV type 1 (HSV-1) DNA Pol mutants based on transfection of a set of overlapping viral cosmids and plasmids. With this approach, twenty HSV-1 recombinants with single or dual mutations within the DNA pol gene were successfully generated and subsequently evaluated for their susceptibilities to acyclovir (ACV), foscarnet (FOS), cidofovir (CDV), and adefovir (ADV). Mutations within DNA Pol conserved regions II (A719T and S724N), VI (L778M, D780N, and L782I), and I (F891C) were shown to induce cross-resistance to ACV, FOS, and ADV, with two of these mutations (S724N and L778M) also conferring significant reduction in CDV susceptibility. Mutant F891C was associated with the highest levels of resistance towards ACV and FOS and was strongly impaired in its replication capacity. One mutation (D907V) lying outside of the conserved regions was also associated with this ACV-, FOS-, and ADV-resistant phenotype. Some mutations (K522E and Y577H) within the delta-region C were lethal, whereas others (P561S and V573M) induced no resistance to any of the drugs tested. Recombinants harboring mutations within conserved regions V (N961K) and VII (Y941H) were resistant to ACV but susceptible to FOS. Finally, mutations within conserved region III were associated with various susceptibility profiles. This new system allows a rapid and accurate evaluation of the functional role of various DNA Pol mutations, which should translate into improved management of drug-resistant HSV infections.  相似文献   

13.
Human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of herpes simplex virus type 1 (HSV-1). A delay in HSV replication of 15 h as well as a consistent, almost 3 log inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 h after superinfection were observed compared with controls infected with HSV alone. Treatment of HCMV-infected HEL cells with cycloheximide (100 micrograms/ml) for 3 or 24 h, conditions known to result in accumulation of HCMV immediate-early and early mRNA, was demonstrated effective in blocking HCMV protein synthesis, as shown by immunoprecipitation with HCMV antibody-positive polyvalent serum. Cycloheximide treatment of HCMV-infected HEL cells and removal of the cycloheximide block before superinfection inhibited HSV-1 replication more efficiently than non-drug-treated superinfected controls. HCMV DNA-negative temperature-sensitive mutants restricted HSV as efficiently as wild-type HCMV suggesting that immediate-early and/or early events which occur before viral DNA synthesis are sufficient for inhibition of HSV. Inhibition of HSV-1 in HCMV-infected HEL cells was unaffected by elevated temperature (40.5 degrees C). However, prior UV irradiation of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HSV-2 replication was similarly inhibited in HCMV-infected HEL cells. However, replication of adenovirus, another DNA virus, was not restricted in these cells under the same conditions. Superinfection of HCMV-infected HEL cells with HSV-1 labeled with [3H]thymidine provided evidence that the labeled virus could penetrate to the nucleus of cells after superinfection. Evidence for penetration of superinfecting HSV into HCMV-infected cells was also provided by blot hybridization of HSV DNA synthesized in cells infected with HSV alone versus superinfected cell cultures at 0 and 48 h after superinfection. In addition, superinfection with vesicular stomatitis virus ruled out a role for interferon in restriction of HSV replication in this system.  相似文献   

14.
Herpes simplex virus type 2 (HSV-2) strains inhibit the synthesis of both DNA and protein of the host cell more rapidly than HSV-1 strains. Several intertypic HSV-1 X HSV-2 recombinants and parental strains were examined for their ability to inhibit rapidly the synthesis of host protein and DNA. The two functions cosegregated in all of eight recombinants tested and are therefore controlled by the same gene or by different genes in the same region of the viral DNA.  相似文献   

15.
A vector which expresses the herpes simplex virus type 1 (HSV-1) (strain 17) DNA polymerase gene was constructed by ligating two separately cloned HSV DNA restriction fragments into an intermediate plasmid and then mobilizing the intact polymerase gene-encoding sequence into a pSV2 derivative. The expression vector (pD7) contains a functional simian virus 40 replication origin and early enhancer-promoter upstream from the HSV DNA polymerase-encoding sequence. COS-1 cells transfected with pD7 contained an RNA species, shown by Northern blot analysis to hybridize specifically with an HSV DNA pol probe and to be the same size (4.3 kilobases) as the pol mRNA found in HSV-1-infected COS-1 cells. A genetic complementation test was used to establish that pD7 expresses a functional pol gene product. COS-1 cells transfected with pD7 were able to partially complement the growth defect of an HSV-1 (KOS) temperature-sensitive mutant, tsC7, in the DNA polymerase gene at the nonpermissive temperature.  相似文献   

16.
A novel mouse L-cell mutant cell line defective in the biosynthesis of glycosaminoglycans was isolated by selection for cells resistant to herpes simplex virus (HSV) infection. These cells, termed sog9, were derived from mutant parental gro2C cells, which are themselves defective in heparan sulfate biosynthesis and 90% resistant to HSV type 1 (HSV-1) infection compared with control L cells (S. Gruenheid, L. Gatzke, H. Meadows, and F. Tufaro, J. Virol. 67:93-100, 1993). In this report, we show that sog9 cells exhibit a 3-order-of-magnitude reduction in susceptibility to HSV-1 compared with control L cells. In steady-state labeling experiments, sog9 cells accumulated almost no [35S]sulfate-labeled or [6-3H]glucosamine-labeled glycosaminoglycans, suggesting that the initiation of glycosaminoglycan assembly was specifically reduced in these cells. Despite these defects, sog9 cells were fully susceptible to vesicular stomatitis virus (VSV) and permissive for both VSV and HSV replication, assembly, and egress. HSV plaques formed in the sog9 monolayers in proportion to the amount of input virus, suggesting the block to infection was in the virus entry pathway. More importantly, HSV-1 infection of sog9 cells was not significantly reduced by soluble heparan sulfate, indicating that infection was glycosaminoglycan independent. Infection was inhibited by soluble gD-1, however, which suggests that glycoprotein gD plays a role in the infection of this cell line. The block to sog9 cell infection by HSV-1 could be eliminated by adding soluble dextran sulfate to the inoculum, which may act by stabilizing the virus at the sog9 cell surface. Thus, sog9 cells provide direct genetic evidence for a proteoglycan-independent entry pathway for HSV-1, and results with these cells suggest that HSV-1 is a useful reagent for the direct selection of novel animal cell mutants defective in the synthesis of cell surface proteoglycans.  相似文献   

17.
Mutations (paar) in herpes simplex virus (HSV) which confer resistance to phosphonoacetic acid involve genes associated with virus-induced DNA polymerase activity. Two mutants of HSV (HSV-1 tsH and HSV-2 ts6) produce a thermolabile DNA polymerase activity. In this study, the ts lesions present in these mutants and those present in two independent phosphonoacetic acid-resistant mutants of HSV-1 and HSV-2 (paar-1 and paar-2) have been physically mapped by restriction endonuclease analysis of recombinants produced between HSV-1 and HSV-2 by intertypic marker rescue. All four mutations mapped within a 3.3-kilobase pair region around map unit 40. The accuracy of the method is reflected by the mapping results for tsH and paar-2, which were found to lie in the same 1.3-kilobase pair region. paar-1 was found to lie to the right of ts6. Virus-induced DNA polymerase is thought to have a molecular weight of 150,000, necessitating a gene with a coding capacity of 4.6 kilobase pairs. The four mutations mapped in this study all lie within a region smaller than this, but the results do not yet prove that all four lesions reside in this or any single gene.  相似文献   

18.
The thymidine kinase (TK) genes from herpes simplex virus (HSV) types 1 and 2 were recombined in vitro with a technique called DNA family shuffling. A high-throughput robotic screen identified chimeras with an enhanced ability to phosphorylate zidovudine (AZT). Improved clones were combined, reshuffled, and screened on increasingly lower concentrations of AZT. After four rounds of shuffling and screening, two clones were isolated that sensitize Escherichia coli to 32-fold less AZT compared with HSV-1 TK and 16,000-fold less than HSV-2 TK. Both clones are hybrids derived from several crossover events between the two parental genes and carry several additional amino acid substitutions not found in either parent, including active site mutations. Kinetic measurements show that the chimeric enzymes had acquired reduced K(M) for AZT as well as decreased specificity for thymidine. In agreement with the kinetic data, molecular modeling suggests that the active sites of both evolved enzymes better accommodate the azido group of AZT at the expense of thymidine. Despite the overall similarity of the two chimeric enzymes, each contains key contributions from different parents in positions influencing substrate affinity. Such mutants could be useful for anti-HIV gene therapy, and similar directed-evolution approaches could improve other enzyme-prodrug combinations.  相似文献   

19.
20.
The UL37 and ICP8 proteins present in herpes simplex virus type 1 (HSV-1)-infected-cell extracts produced at 24 h postinfection coeluted from single-stranded-DNA-cellulose columns. Experiments carried out with the UL37 protein expressed by a vaccinia virus recombinant (V37) revealed that the UL37 protein did not exhibit DNA-binding activity in the absence of other HSV proteins. Analysis of extracts derived from cells coinfected with V37 and an ICP8-expressing vaccinia virus recombinant (V8) and analysis of extracts prepared from cells infected with the HSV-1 ICP8 deletion mutants d21 and n10 revealed that the retention of the UL37 protein on single-stranded DNA columns required a DNA-binding-competent ICP8 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号