首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Proper function of the peroxisome proliferator-activated receptor alpha (PPARalpha) is essential for the regulation of hepatic fatty acid metabolism. Fatty acid levels are increased in liver during the metabolism of ethanol and should activate PPARalpha. However, recent in vitro data showed that ethanol metabolism inhibited the function of PPARalpha. We now report that ethanol feeding impairs fatty acid catabolism in the liver in part via blocking PPARalpha-mediated responses in C57BL/6J mice. Ethanol feeding decreased PPARalpha/retinoid X receptor alpha binding in electrophoretic mobility shift assay of liver nuclear extracts. mRNAs for PPAR-regulated genes were reduced (long chain and medium chain acyl-CoA dehydrogenases) or failed to be induced (acyl-CoA oxidase, liver carnitine palmitoyl-CoA transferase, very long chain acyl-CoA synthetase, very long chain acyl-CoA dehydrogenase) in livers of the ethanol-fed animals, and ethanol feeding did not increase the rate of fatty acid beta-oxidation. Wy14,643, a PPARalpha agonist, restored the DNA binding activity of PPARalpha/retinoid X receptor alpha, induced mRNA levels of PPARalpha target genes, stimulated the rate of fatty acid beta-oxidation, and prevented fatty liver in ethanol-fed animals. Impairment of PPARalpha function during ethanol consumption contributes to the development of alcoholic fatty liver, which can be overcome by Wy14,643.  相似文献   

2.
In this study, we found that the mRNA level of peroxisome proliferator-activated receptor (PPAR) alpha, but not of PPARdelta, was elevated in the jejunum during the postnatal development of the rat. Moreover, we found that the expressions of PPAR-dependent genes, such as acyl-CoA oxidase, L-FABP, and I-FABP, were also increased during the postnatal development of the small intestine. Electrophoretic mobility shift assay revealed that both the PPARalpha-9-cis-retinoic acid receptor alpha (RXRalpha) heterodimer and the PPARdelta-RXRalpha heterodimer bound to the peroxisome proliferator response element (PPRE) of acyl-CoA oxidase and L-FABP genes. The binding of the PPARalpha-RXRalpha heterodimer to the PPREs of the various genes was enhanced by the addition of PPARalpha, with a concomitant reduction of the binding of PPARdelta-RXRalpha to the PPREs. Furthermore, the binding activity of PPARalpha-RXRalpha, but not PPARdelta-RXRalpha, to the PPREs was enhanced by the addition of a PPAR ligand, WY14,643. The GAL4-PPAR-chimera reporter assay showed that WY14,643 transactivated the reporter gene through action of PPARalpha, but not through PPARdelta, in Caco-2 cells. Furthermore, oral administration of a PPAR ligand, clofibrate, during 3 consecutive days of the weanling period caused a parallel increase in the mRNA levels of these PPAR-dependent genes. These results suggest that acyl-CoA oxidase, L-FABP and the other PPAR-dependent genes in the small intestine may be coordinately modulated during postnatal development by the disproportional expression of PPARalpha over PPARdelta.  相似文献   

3.
4.
It is thought that peroxisome proliferator-activated receptor alpha (PPARalpha) is a major regulator for fatty acid metabolism. Long-chain fatty acids have been shown to induce expression of the genes related to fatty acid metabolism through PPARalpha. However, it is unclear whether the intensity of PPARalpha activation is different among various fatty acids. In this study, we compared various fatty acids in the capability of PPARalpha activation by differential protease sensitivity assay (DPSA), electrophoretic mobility shift assay and GAL4-PPAR chimera reporter assay in intestinal cell line, Caco-2. DPSA revealed that polyunsaturated fatty acids of 18 to 20 carbon groups with 3-5 double bonds strongly induced a PPARalpha conformational change. The ligand-induced changes in the sensitivity to protease corresponded to the enhancement of the binding of PPARalpha-RXRalpha heterodimer to the PPAR-response element (PPRE). The GAL4-PPAR chimera reporter assay revealed that the DNA binding-independent transactivity of PPARalpha was induced by various fatty acids with a wide spectrum of intensity which correlated with the conformational change of PPARalpha. These results suggest that PPARalpha has greater selectivity to certain types of polyunsaturated fatty acids, and that the ligand-induced conformational change of PPARalpha leads to parallel increases in both DNA binding to the PPAR-response element and the DNA binding-independent transactivity.  相似文献   

5.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor activated by fatty acids, hypolipidemic drugs, and peroxisome proliferators (PPs). Like other nuclear receptors, PPARalpha is a phosphoprotein whose activity is affected by a variety of growth factor signaling cascades. In this study, the effects of protein kinase C (PKC) on PPARalpha activity were explored. In vivo phosphorylation studies in COS-1 cells transfected with murine PPARalpha showed that the level of phosphorylated PPARalpha is increased by treatment with the PP Wy-14,643 as well as the PKC activator phorbol myristol acetate (PMA). In addition, inhibitors of PKC decreased Wy-14,643-induced PPARalpha activity in a variety of reporter assays. Overexpressing PKCalpha, -beta, -delta, and -zeta affected both basal and Wy-14,643-induced PPARalpha activity. Four consensus PKC phosphorylation sites are contained within the DNA binding (C-domain) and hinge (D-domain) regions of rat PPARalpha (S110, T129, S142, and S179), and their contribution to receptor function was examined. Mutation of T129 or S179 to alanine prevented heterodimerization of PPARalpha with RXRalpha, lowered the level of phosphorylation by PKCalpha and PKCdelta in vitro, and lowered the level of phosphorylation of transfected PPARalpha in transfected cells. In addition, the T129A mutation prevented PPARalpha from binding DNA in an electromobility shift assay. Together, these studies demonstrate a direct role for PKC in the regulation of PPARalpha, and suggest several PKCs can regulate PPARalpha activity through multiple phosphorylation sites.  相似文献   

6.
7.
The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular protein that specifically binds acyl-CoA esters with high affinity and is structurally and functionally conserved from yeast to mammals. In vitro studies indicate that ACBP may regulate the availability of acyl-CoA esters for various metabolic and regulatory purposes. The protein is particularly abundant in cells with a high level of lipogenesis and de novo fatty acid synthesis and is significantly induced during adipocyte differentiation. However, the molecular mechanisms underlying the regulation of ACBP expression in mammalian cells have remained largely unknown. Here we report that ACBP is a novel peroxisome proliferator-activated receptor (PPAR)gamma target gene. The rat ACBP gene is directly activated by PPARgamma/retinoid X receptor alpha (RXRalpha) and PPARalpha/RXRalpha, but not by PPARdelta/RXRalpha, through a PPAR-response element in intron 1, which is functionally conserved in the human ACBP gene. The intronic PPAR-response element (PPRE) mediates induction by endogenous PPARgamma in murine adipocytes and confers responsiveness to the PPARgamma-selective ligand BRL49653. Finally, we have used chromatin immunoprecipitation to demonstrate that the intronic PPRE efficiently binds PPARgamma/RXR in its natural chromatin context in adipocytes. Thus, the PPRE in intron 1 of the ACBP gene is a bona fide PPARgamma-response element.  相似文献   

8.
Most cis-acting regulatory elements have generally been assumed to activate a single nearby gene. However, many genes are clustered together, raising the possibility that they are regulated through a common element. We show here that a single peroxisome proliferator response element (PPRE), located between the mouse PEX11 alpha and perilipin genes, confers on both genes activation by peroxisome proliferator-activated receptor alpha (PPAR alpha) and PPAR gamma. A functional PPRE 8.4 kb downstream of the promoter of PEX11 alpha, a PPAR alpha target gene, was identified by a gene transfection study. This PPRE was positioned 1.9 kb upstream of the perilipin gene and also functioned with the perilipin promoter. In addition, this PPRE, when combined with the natural promoters of the PEX11 alpha and perilipin genes, conferred subtype-selective activation by PPAR alpha and PPAR gamma 2. The PPRE sequence specifically bound to the heterodimer of RXR alpha and PPAR alpha or PPAR gamma 2, as assessed by electrophoretic gel mobility shift assays. Furthermore, tissue-selective binding of PPAR alpha and PPAR gamma to the PPRE was demonstrated in hepatocytes and adipocytes, respectively, by chromatin immunoprecipitation assay. Hence, the expression of these genes is induced through the same PPRE in the liver and adipose tissue, where the two PPAR subtypes are specifically expressed.  相似文献   

9.
Expression of the rat peroxisomal 3-ketoacyl-CoA thiolase gene B is induced by peroxisome proliferators. Although a sequence element like a peroxisome proliferator-activated receptor (PPAR)-binding site is located in the promoter region of this gene, we previously found that this element is competent for the activation by hepatocyte nuclear factor-4, but not functional with PPARalpha. We describe here a new peroxisome proliferator-response element located in the intron 3 (+1422/+1434) that binds in vitro the PPARalpha/retinoid X receptor alpha heterodimer and confers the induction by PPARalpha in transfection assays. We propose a model of regulation of the rat thiolase B gene involving those elements in the promoter and intron 3.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Fibrates are a group of hypolipidemic agents that efficiently lower serum triglyceride levels by affecting the expression of many genes involved in lipid metabolism. These effects are exerted via the peroxisome proliferator-activated receptor alpha (PPARalpha). In addition, fibrates also lower serum cholesterol levels, suggesting a possible link between the PPARalpha and cholesterol metabolism. Bile acid formation represents an important pathway for elimination of cholesterol, and the sterol 12alpha-hydroxylase is a branch-point enzyme in the bile acid biosynthetic pathway, which determines the ratio of cholic acid to chenodeoxycholic acid. Treatment of mice for 1 week with the peroxisome proliferator WY-14,643 or fasting for 24 h both induced the sterol 12alpha-hydroxylase mRNA in liver. Using the PPARalpha knockout mouse model, we show that the induction by both treatments was dependent on the PPARalpha. A reporter plasmid containing a putative peroxisome proliferator-response element (PPRE) identified in the rat sterol 12alpha-hydroxylase promoter region was activated by treatment with WY-14,643 in HepG2 cells, being dependent on co-transfection with a PPARalpha expression plasmid. The rat 12alpha-hydroxylase PPRE bound in vitro translated PPARalpha and retinoid X receptor alpha, albeit weakly, in electrophoretic mobility shift assay. Treatment of wild-type mice with WY-14,643 for 1 week resulted in an increased relative amount of cholic acid, an effect that was abolished in the PPARalpha null mice, verifying the functionality of the PPRE in vivo.  相似文献   

17.
Cytosolic acyl-CoA-binding proteins (ACBP) bind long-chain acyl-CoAs and act as intracellular acyl-CoA transporters and maintain acyl-CoA pools. Arabidopsis thaliana ACBP2 shows conservation at the acyl-CoA-binding domain to cytosolic ACBPs but is distinct by the presence of an N-terminal transmembrane domain and C-terminal ankyrin repeats. The function of the acyl-CoA-binding domain in ACBP2 has been confirmed by site-directed mutagenesis and four conserved residues crucial for palmitoyl-CoA binding have been identified. Results from ACBP2:GFP fusions transiently expressed in onion epidermal cells have demonstrated that the transmembrane domain functions in plasma membrane targeting, suggesting that ACBP2 transfers acyl-CoA esters to this membrane. In this study, we investigated the significance of its ankyrin repeats in mediating protein-protein interactions by yeast two-hybrid analysis and in vitro protein-binding assays; we showed that ACBP2 interacts with the A. thaliana ethylene-responsive element-binding protein AtEBP via its ankyrin repeats. This interaction was lacking in yeast two-hybrid analysis upon removal of the ankyrin repeats. When the subcellular localizations of ACBP2 and AtEBP were further investigated using autofluorescent protein fusions in transient expression by agroinfiltration of tobacco leaves, the DsRed:ACBP2 fusion protein was localized to the plasma membrane while the GFP:AtEBP fusion protein was targeted to the nucleus and plasma membrane. Co-expression of DsRed:ACBP2 and GFP:AtEBP showed a common localization of both proteins at the plasma membrane, suggesting that ACBP2 likely interacts with AtEBP at the plasma membrane.  相似文献   

18.
19.
20.
Peroxisome proliferator-activated receptor alpha (PPARalpha) heterodimerizes with the 9-cis-retinoic acid receptor (RXRalpha) to bind to peroxisome proliferator-response elements (PPRE) present in the upstream regions of a number of genes involved in metabolic homeostasis. Among these genes are those encoding fatty acyl-CoA oxidase (AOx) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (HD), the first two enzymes of the peroxisomal beta-oxidation pathway. Here we demonstrate that the orphan nuclear hormone receptor, RevErbalpha, modulates PPARalpha/RXRalpha- dependent transactivation in a response element-specific manner. In vitro binding analysis showed that RevErbalpha bound the HD-PPRE but not the AOx-PPRE. Determinants within the HD-PPRE required for RevErbalpha binding were distinct from those required for PPARalpha/RXRalpha binding. In transient transfections, RevErbalpha antagonized transactivation by PPARalpha/RXRalpha from an HD-PPRE luciferase reporter construct, whereas no effects were observed with an AOx-PPRE reporter construct. These data identify the HD gene as a target for RevErbalpha and illustrate cross-talk between the RevErbalpha and PPARalpha signaling pathways on the HD-PPRE. Our results suggest a novel role for RevErbalpha in regulating peroxisomal beta-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号