首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Ascidians are protochordates related to vertebrate ancestors. The ascidian larval tail, with its notochord, dorsal nerve cord, and flanking rows of sarcomeric muscle cells, exhibits the basic chordate body plan. Molecular characterization of ascidian larval tail muscle may provide insight into molecular aspects of vertebrate skeletal muscle evolution. We report studies of the Ci-TnI gene of the ascidian Ciona intestinalis, which encodes the muscle contractile regulatory protein troponin I (TnI). Previous studies of a distantly related ascidian, Halocynthia roretzi, showed that different TnI genes were expressed in larval and adult muscles, the larval TnI isoforms having an unusual C-terminal truncation not seen in any vertebrate TnI. Here we show that, in contrast with Halocynthia, Ciona does not have a specialized larval TnI; the same TnI gene that is expressed in the heart and body-wall muscle of the sessile adult is also expressed in embryonic/larval tail muscle cells. Moreover the TnI isoform produced in embryonic/larval muscle is identical to that produced in adult body-wall muscle, i.e., a 182-residue protein with the characteristic chain length and overall structure of vertebrate skeletal muscle TnI isoforms. Phylogenetic analyses indicate that the unique features of Halocynthia larval TnI likely represent derived features, and hence that the vertebrate-skeletal-muscle -like TnI of Ciona is a closer reflection of the ancestral ascidian larval TnI. Our results indicate that characteristics of vertebrate skeletal muscle TnI emerged early in the evolution of chordate locomotory muscle, before the ascidian/vertebrate divergence. These features could be related to a basal chordate locomotory innovation-e.g., swimming by oscillation of an internal notochord skeleton-or they may be of even greater antiquity within the deuterostomes.  相似文献   

5.
Cell-cell interactions play important roles in a variety of developmental processes, and therefore molecules involved in the signaling pathways have been studied extensively. Recently, the draft genome sequence of the basal chordate, Ciona intestinalis, was determined. Here we annotated genes for the signaling pathways of Wnt, transforming growth factor beta (TGFbeta), Hedgehog, and JAK/STAT in the genome of Ciona intestinalis. The Ciona genome contains ten wnt genes, six frizzled genes, four sFRP genes, ten TGFbeta family member genes, five TGFbeta-receptor genes, and five Smad genes; most of the genes were found with less redundancy than in vertebrate genomes. The other genes in the signaling pathways are present as a single copy in the Ciona genome. In addition, all of the identified genes for the signaling pathway, except for a few genes, have EST evidence, and their cDNAs are available from the Ciona intestinalis gene collection. Therefore, Ciona intestinalis may provide an experimental system for exploring the basic genetic cascade associated with the signaling pathways in chordates.  相似文献   

6.
7.
8.
Comparison of the predicted protein sets encoded by the complete genomes of two vertebrates (human and pufferfish), the urochordate Ciona intestinalis, three nonchordate animals, and two fungi were used to reconstruct a set of gene families present in the common ancestor of chordates. These ancestral families were much more likely to be lost in Ciona than in either vertebrate. In addition, of 256 duplicate gene pairs that arose by duplication prior to the most recent common ancestor of vertebrates and insects, one of the duplicate genes was four times as likely to be lost in Ciona as in the vertebrates. These results show that the genome of Ciona is not representative of the ancestral chordate genome with respect to gene content but rather shows derived features that may reflect adaptation of the specific ecological niche of urochordates.  相似文献   

9.
All vertebrates have directional asymmetries in the organization of their internal organs. In jawed vertebrates, development of asymmetry is controlled by a conserved molecular pathway that includes Pitx2, which is expressed by lateral plate mesoderm cells on the left side of the embryo. Pitx2 is a member of the Pitx homeobox gene family, the expression of which also marks stomodeal ectoderm and the adenohypophysis. Here we report the characterization of Pitx genes from Branchiostoma floridae (an amphioxus) and Ciona intestinalis (a urochordate), representatives of two basal chordate lineages and successively deeper outgroups to the vertebrates. Expression of B. floridae Pitx is similar to that reported from B. belcheri, a different amphioxus species. Expression of the Ciona Pitx ortholog in the embryonic primordial pharynx and adult neural complex leads us to propose the Ciona primordial pharynx and ciliated funnel are homologous to the adenohypophyseal placode and adenohypophysis, respectively. Additionally, in both species we identify asymmetrical left-sided expression of Pitx genes during embryonic development. This shows that asymmetrical Pitx gene expression, and by inference directional asymmetry, evolved before the radiation of living chordates and should be considered a chordate character.  相似文献   

10.
Retinoic acid (RA)-mediated expression of the homeobox gene Hox1 is a hallmark of the chordate central nervous system (CNS). It has been suggested that the RA-Hox1 network also functions in the epidermal ectoderm of chordates. Here, we show that in the urochordate ascidian Ciona intestinalis, RA-Hox1 in the epidermal ectoderm is necessary for formation of the atrial siphon placode (ASP), a structure homologous to the vertebrate otic placode. Loss of Hox1 function resulted in loss of the ASP, which could be rescued by expressing Hox1 in the epidermis. As previous studies showed that RA directly upregulates Hox1 in the epidermis of Ciona larvae, we also examined the role of RA in ASP formation. We showed that abolishment of RA resulted in loss of the ASP, which could be rescued by forced expression of Hox1 in the epidermis. Our results suggest that RA-Hox1 in the epidermal ectoderm played a key role in the acquisition of the otic placode during chordate evolution.  相似文献   

11.
12.
13.
In the present study, genes involved in the pathways that establish cell polarity and cascades regulating actin dynamics were identified in the completely sequenced genome of Ciona intestinalis, a basal chordate. It was revealed that the Ciona genome contains orthologous genes of each component of aPKC-Par and PCP pathways and WASP/WAVE/SCAR and ADF/cofilin cascades, with less redundancy than the vertebrate genomes, suggesting that the conserved pathways/cascades function in Ciona development. In addition, the present study found that the orthologous proteins of five gene groups (Tc10, WRCH, RhoD, PLC-L, and PSKH) are conserved in humans and Ciona but not in Drosophila melanogaster, suggesting a similarity in the gene composition of Ciona to that of vertebrates. Ciona intestinalis, therefore, may provide refined clues for the study of vertebrate development and evolution.  相似文献   

14.
We have carried out a comprehensive survey of the spatiotemporal expression of cadherin superfamily genes in the basal chordate Ciona intestinalis, as an example of a genome-wide expression study of a gene family directly regulating cellular processes in morphogenesis. We found 15 definitely expressed cadherin superfamily genes in the Ciona intestinalis genome. Up to the late gastrula stage, all identified delta-protocadherins and the type II classical cadherin, but not other subfamily members, were zygotically expressed. At later stages, however, all cadherin superfamily genes were expressed in the nervous system. These data are useful for understanding the role of these genes in Ciona development and the evolution of chordates.  相似文献   

15.
Changes or innovations in gene regulatory networks for the developmental program in the ancestral chordate genome appear to be a major component in the evolutionary process in which tadpole-type larvae, a unique characteristic of chordates, arose. These alterations may include new genetic interactions as well as the acquisition of new regulatory genes. Previous analyses of the Ciona genome revealed that many genes may have emerged after the divergence of the tunicate and vertebrate lineages. In this paper, we examined this possibility by examining a second non-vertebrate chordate genome. We conclude from this analysis that the ancient chordate included almost the same repertory of regulatory genes, but less redundancy than extant vertebrates, and that approximately 10% of vertebrate regulatory genes were innovated after the emergence of vertebrates. Thus, refined regulatory networks arose during vertebrate evolution mainly as preexisting regulatory genes multiplied rather than by generating new regulatory genes. The inferred regulatory gene sets of the ancestral chordate would be an important foundation for understanding how tadpole-type larvae, a unique characteristic of chordates, evolved.  相似文献   

16.
The draft genome of the ascidian Ciona intestinalis has been sequenced. Mapping of the genome sequence to the Ciona 14 haploid chromosomes is essential for future studies of the genome-wide control of gene expression in this basal chordate. Here we describe an efficient protocol for fluorescent in situ hybridization for mapping genes to the Ciona chromosomes. We demonstrate how the locations of two BAC clones can be mapped relative to each other. We also show that this method is efficient for coupling two so-far independent scaffolds into one longer scaffold when two BAC clones represent sequences located at either end of the two scaffolds.  相似文献   

17.
One of challenges in the field of developmental biology is to understand how spatially and/or temporally coordinated expression of genes is controlled at the chromosomal level. It remains controversial whether genes expressed in a given tissue are randomly distributed throughout a given animal genome, or instead resolve into clusters. Here we used microarray analysis to identify more than 1,700 genes that are expressed preferentially in each of 11 organs of the chordate Ciona intestinalis adult, and determined the location of these genes on the 14 pairs of Ciona chromosomes. In spite of extensive mapped gene analysis, we only confirmed small clusters containing two or three genes. Our result indicates that organ-specific genes are distributed rather evenly all over chromosomes, suggesting that the notion of clustering of organ-specific genes in animal genomes is not generally applicable to this chordate.  相似文献   

18.
19.
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.  相似文献   

20.
The activity of myogenic regulatory factor (MRF) genes is essential for vertebrate muscle development, whereas invertebrate muscle development is largely independent of MRF function. This difference indicates that myogenesis is controlled by distinct regulatory mechanisms in these two groups of animals. Here we used overexpression and gene knockdown to investigate the role in embryonic myogenesis of the single MRF gene of the invertebrate chordate Ciona intestinalis (Ci-MRF). Injection of Ci-MRF mRNA into eggs resulted in increased embryonic muscle-specific gene activity and revealed the myogenic activity of Ci-MRF by inducing the expression of four muscle marker genes, Acetylcholinesterase, Actin, Troponin I, and Myosin Light Chain in non-muscle lineages. Conversely, inhibiting Ci-MRF activity with antisense morpholinos down-regulated the expression of these genes. Consistent with the effects of morpholinos on muscle gene activity, larvae resulting from morpholino injection were paralyzed and their "muscle" cells lacked myofibrils. We conclude that Ci-MRF is required for larval tail muscle development and thus that an MRF-dependent myogenic regulatory network probably existed in the ancestor of tunicates and vertebrates. This possibility raises the question of whether the earliest myogenic regulatory networks were MRF-dependent or MRF-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号