首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Identification of resistance to reniform nematode (Rotylenchulus reniformis) is the first step in developing resistant soybean (Glycine max) cultivars that will benefit growers in the mid-South region of the United States. This study was conducted to identify soybean (G. max and G. soja) lines with resistance to this pathogen. Sixty-one wild and domestic soybean lines were evaluated in replicated growth chamber tests. Six previously untested soybean lines with useful levels of resistance to reniform nematode were identified in both initial screening and subsequent confirmation tests: released germplasm lines DS4-SCN05 (PI 656647) and DS-880 (PI 659348); accession PI 567516 C; and breeding lines DS97-84-1, 02011-126-1-1-2-1 and 02011-126-1-1-5-1. Eleven previously untested moderately susceptible or susceptible lines were also identified: released germplasm lines D68-0099 (PI 573285) and LG01-5087-5; accessions PI 200538, PI 416937, PI 423941, PI 437697, PI 467312, PI 468916, PI 594692, and PI 603751 A; and cultivar Stafford (PI 508269). Results of previously tested lines evaluated in the current study agreed with published reports 69.6% of the time for resistant lines and 87.5% of the time for susceptible lines. Soybean breeders may benefit from incorporating the newly identified resistant lines into their breeding programs.  相似文献   

2.
Reproduction of reniform nematode Rotylenchulus reniformis on 139 soybean lines was evaluated in a greenhouse in the summer of 2001. Cultivars and lines (119 total) were new in the Arkansas and Mississippi Soybean Testing Programs, and an additional 20 were submitted by C. Overstreet, Louisiana State Extension Nematologist. A second test of 32 breeding lines and 2 cultivars from the Clemson University soybean breeding program was performed at the same time under the same conditions. Controls were the resistant cultivars Forrest and Hartwig, susceptible Braxton, and fallow infested soil. Five treatment replications were planted in sandy loam soil infested with 1,744 eggs and vermiform reniform nematodes, grown for 10 weeks in 10 cm-diam.- pots. Total reniform nematodes extracted from soil and roots was determined, and a reproductive factor (final population (Pf)/ initial inoculum level (Pi)) was calculated for each genotype. Reproduction on each genotype was compared to the reproduction on the resistant cultivar Forrest (RF), and the log ratio [log₁₀(RF + 1) is reported. Cultivars with reproduction not significantly different from Forrest (log ratio) were not suitable hosts, whereas those with greater reproductive indices were considered suitable hosts. These data will be useful in the selection of soybean cultivars to use in rotation with cotton or other susceptible crops to help control the reniform nematode and to select useful breeding lines as parent material for future development of reniform nematode resistant cultivars and lines.  相似文献   

3.
The effects of culture filtrates of Rhizoctonia solani and root exudates of R. solani-infected cotton (Gossypium hirsutum) seedlings on hatching of eggs and infectivity of females of Rotylenchulus reniformis were evaluated in an attempt to account for the enhanced nematode reproduction observed in the presence of this fungus. Crude filtrates of R. solani cultures growing over sterile, deionized distilled water did not affect egg hatching. Exudates from roots of cotton seedlings increased hatching of R. reniformis eggs over that observed in water controls. Exudates from cotton seedling roots not infected or infected with R. solani did not differ in their effect on egg hatching. However, infection of cotton seedlings by reniform females was increased in the presence of R. solani, resulting in the augmented egg production and juvenile population densities in soil observed in greenhouse studies.  相似文献   

4.
The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.  相似文献   

5.
The influence of Chloris gayana, Crotalaria juncea, Digitaria decumbens, Tagetes patula, and a chitin-based soil amendment on Hawaiian populations of Rotylenchulus reniformis was examined. Chloris gayana was a nonhost for R. reniformis. The nematode did not penetrate the roots, and in greenhouse and field experiments, C. gayana reduced reniform nematode numbers at least as well as fallow. Tagetes patula was a poor host for reniform nematode and reduced reniform nematode numbers in soil better than did fallow. Crotalaria juncea was a poor host for R. reniformis, and only a small fraction of the nematode population penetrated the roots. Crotalaria juncea and D. decumbens reduced reniform nematode populations at least as well as fallow. A chitin-based soil amendment, applied at 2.24 t/ha to fallow soil, did not affect the population decline of reniform nematode.  相似文献   

6.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

7.
The interrelationships between reniform nematode (Rotylenchulus reniformis) and the cotton (Gossypium hirsutum) seedling blight fungus (Rhizoctonia solani) were studied using three isolates of R. solani, two populations of R. reniformis at multiple inoculum levels, and the cotton cultivars Dehapine 90 (DP 90) and Dehapine 41 (DP 41). Colonization of cotton hypocotyl tissue by R. solani resulted in increases (P ≤ 0.05) in nematode population densities in soil and in eggs recovered from the root systems in both 40- and 90-day-duration experiments. Increases in soil population densities resulted mainly from increases in juveniles. Enhanced reproduction of R. reniformis in the presence of R. solani was consistent across isolates (1, 2, and 3) of R. solani and populations (1 and 2) and inoculum levels (0.5, 2, 4, and 8 individuals/g of soil) of R. reniformis, regardless of cotton cultivar (DP 90 or DP 41). Severity of seedling blight was not influenced by the nematode. Rhizoctonia solani caused reductions (P ≤ 0.05) in cotton growth in 40- and 90-day periods. Rotylenchulus reniformis reduced cotton growth at 90 days. The relationship between nematode inoculum levels and plant growth reductions was linear. At 90 days, the combined effects of these pathogens were antagonistic to plant growth.  相似文献   

8.
The reniform nematode, Rotylenchulus reniformis Linford &Oliveira, has become a serious threat to cotton (Gossypium hirsutum L.) production in the United States during the past decade. The objective of this study is to isolate fungi from eggs of R. reniformis and select potential biological control agents for R. reniformis on cotton. Soil samples were collected from cotton fields located in Jefferson County, Arkansas. Eight genera of fungi were included in the 128 fungal isolates obtained, and among them were five strains of the nematophagous fungus ARF. The mtDNA RFLP pattern, colony growth characteristics, and pathogenicity indicate the five ARF isolates represent one described strain and one new strain. Light and electron microscopic observations suggest ARF is an active parasite of R. reniformis, with parasitism ranging from 48% to 79% in in vitro tests. Three greenhouse experiments demonstrated ARF successfully suppressed the number of reniform nematodes during the first and second generation of the nematode. Reductions in numbers of R. reniformis on the roots for the seven application rates of 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% ARF were 87%, 92%, 94%, 96%, 97%, 98%, and and 98%, respectively.  相似文献   

9.
The use of plant-covers oat (Arena sativa L.), rhodesgrass (Chloris gayana Kunth), soybean (Glycine max [L.] Merr.), and marigold (Tagetes patula L.) during pineapple inter-cycle planting periods was investigated at two sites (Kunia and Whitmore, Oahu, HI) as a potential means to reduce population densities of Rotylenchulus reniformis, Helicotylenchus dihystera, and Paratylenchus spp. Clean fallow and fallow covered with pineapple-plant residues (mulch) were the controls without plant-cover. Regardless of treatments, population densities of R. reniformis declined with time at both sites to low residue levels by the end of the 6-month period. Treatment means of R. reniformis population densities in the plant-cover treatments were lower than the controls'' (P = 0.05). The plant-cover treatments also effected higher rates of R. reniformis population decline at both sites during the period, being 2.0 to 2.2 times that of the mulch control and 1.2 to 1.4 times that of the fallow control. Plant-covers'' effect on H. dihystera during the same period at both sites was variable, resulting in decreased, unchanged, or increased population densities. The change was especially obvious in the oat-cover treatment, where H. dihystera population densities increased 9 to 15-fold at both sites. Population of Paratylenchus spp. was absent or present at low levels at the sites throughout the period. Biological activities antagonistic to R. reniformis at Kunia were estimated at the end of 6 months by comparing the extent of nematode''s reproduction (on cowpea seedlings) in the treatment soils that had been subjected to autoclaving or freezing temperature. Although higher indices of antagonistic activities were observed in soils with prior plant-cover treatments than in soils from the controls, none of the treatments resulted in conferring soils the increased ability to suppress re-introduced R. reniformis populations or enhance subsequent pineapple-plant growth.  相似文献   

10.
Baermann funnels were modified to eliminate or reverse the small temperature gradient (1-2 C/cm) across the soil layer that normally results from water evaporation. Effects of modifications on extraction efficiency were examined at various ambient temperatures and after overnight adaptation of three nematode species at 20 and 30 C. Extraction of Meloidogyne incognita from sandy loam, Tylenchulus semipenetrans from sandy clay loam, and Rotylenchulus reniformis from silt was greatly accelerated simply by covering funnels to prevent evaporation. In most cases, covering increased the nematodes extracted by 10-100 times after 5.5-48 hours. Faster and more efficient extraction of R. reniformis occurred over a wide range of ambient temperature (18-29 C). Effects of ambient temperature and temperature gradient direction on Baermann funnel extraction of R. reniformis were partly inconsistent with the behavior of R. reniformis in agar. Nematodes in agar moved toward cold at some ambient temperatures and toward heat at other temperatures. They always appeared to move toward cold on Baermann funnels. Differences were not attributable to blockage of gas exchange by covers. In agar and in funnels, the patterns of response to ambient temperature were shifted in the direction of the storage temperature.  相似文献   

11.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

12.
From infestation of lettuce with preinfective females to egg deposition, populations of Rotylenchulus reniformis from Baton Rouge, Louisiana; Lubbock and Weslaco, Texas; and Mayaguez, Puerto Rico, required 41, 13, 7, and 7 days at 15, 20, 25, and 34 C, respectively. No nematode infection occurred at 10 C with any R. reniformis population, and the population from Puerto Rico did not reproduce at 15 C. Nematode survival was not influenced by temperature, since populations from Texas and Louisiana survived for 6 months without a host at - 5 , - 1 , 4, and 25 C. Survival of R. reniformis was substantially influenced by soil moisture. Soil moistures greater than 7% (< 1 bar) aided nematode survival at storage temperature of 25 C, whereas moisture adversely affected nematode survival below freezing. Soil moisture below 4% (> 15 bars) favored nematode survival below freezing but adversely affected nematodes in soils stored at 25 C. Soil moisture effects on nematode survival were less accentuated at 4 and 0 C.  相似文献   

13.
Temperature gradient fluctuations that occur naturally as a result of heating and cooling of the soil surface were reproduced within 15-cm-d, 15-cm-long acrylic tubes filled with moist sand. Sunny and rainy periods during the late summer in eastern Texas were simulated. Five ecologically different nematode species were adapted to fluctuating temperatures for 20-36 hours at a simulated depth of 12.5 cm before being injected simultaneously into the centers of tubes at that depth. When heat waves were propagated horizontally to eliminate gravitational effects, the movement of Ditylenchus phyllobius, Steinernema glaseri, and Heterorhabditis bacteriophora relative to the thermal surface was rapid and largely random. However, Rotylenchulus reniformis moved away from and Meloidogyne incognita moved toward the thermal surface. When heat waves were propagated upward or downward, responses to temperature were the same as when propagated horizontally, irrespective of gravity. The initial direction of movement 1.5 hours after introduction to 20-era-long tubes at five depths at five intervals within a 24-hour cycle indicated that M. incognita moved away from and R. reniformis moved toward the temperature to which last exposed. Differences in movement of the five species tested relative to gravity appeared related to body length, with the smallest nematodes moving downward and the largest moving upward.  相似文献   

14.
Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb.  相似文献   

15.
The reniform nematode (Rotylenchulus reniformis) is an important pathogen of pigeonpea (Cajanus cajan). Forty‐six medium maturity (mature in 151–200 days at Patancheru, India) pigeonpea genotypes were evaluated for resistance and tolerance to the reniform nematode in greenhouse and field tests, over the period 1990–97. Each genotype was screened for number of nematode egg masses on a 1 (no egg mass = highly resistant) to 9 (> 50 egg masses = highly susceptible) scale. Plant biomass production in carbofurantreated plots was compared with that in non‐treated plots in a field naturally infested with R. reniformis. Pigeonpea genotypes C 11, ICPL 87119 and ICPL 270 were used as nematode susceptible checks. Genotypes with good plant growth, both in nematode‐free and nematode‐infested plots, were identified as tolerant and evaluated for plant growth and yield for at least three years. All the tested genotypes were susceptible (7 and 9 egg mass score). Single‐plant‐selections, based on plant vigour and yield, were made from genotypes showing tolerance to nematode infection. The level of tolerance was enhanced by plant‐to‐progeny row selection for plant vigour and seed yield in a nematode‐sick field for at least three years. The most promising nematode tolerant genotypes produced significantly greater yield and biomass than the locally grown pigeonpea cultivars in fields naturally infested with R. reniformis at two locations. Pigeonpea landraces are considered to be the most likely sources of tolerance to the nematode. These reniform nematode tolerant lines represent new germplasm and they are available in the genebank of pigeonpea at ICRISAT bearing accession numbers ICP 16329, ICP 16330, ICP 16331, ICP 16332, and ICP 16333.  相似文献   

16.
The effects of intercycle cover crops on Rotylenchulus reniformis population densities in pineapple were evaluated in one greenhouse and two field experiments. In the greenhouse, Crotalaria juncea, Brassica napus, and Tagetes erecta were planted for 3 months and then incorporated. These treatments were compared to weedy fallow with or without 1,3-dichloropropene (1,3-D) in three soils (Makawao fallow, Wahiawa fallow, and Wahiawa pineapple) naturally infested with R. reniformis. All cover crop incorporation suppressed R. reniformis numbers in cowpea more than did the weedy treatment in the Makawao (P < 0.05) but not in the Wahiawa soils. Crotalaria juncea treatment increased bacterivorous nematodes and nematode-trapping fungal population densities more than the other treatments in Makawao fallow and Wahiawa pineapple-planted soils. The field trials included the same plants as well as Sinapis alba. Treatments with Crotalaria juncea and 1,3-D maintained lower R. reniformis population densities on pineapple longer than other cover crops or weedy fallow treatments. Crotalaria juncea could have suppressed R. reniformis because it is a poor host and because it enhances nematode-trapping fungi when incorporated into soil. Treatment with 1,3-D reduced microbial activities but produced the greatest pineapple yield.  相似文献   

17.
It has been hypothesized Rotylenchulus reniformis (Rr) has a competitive advantage over Meloidogyne incognita (Mi) in the southeastern cotton production region of the United States. This study examines the reproduction and development of Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) in separate and concomitant infections on cotton. Under greenhouse conditions, cotton seedlings were inoculated simultaneously with juveniles (J2) of M. incognita and vermiform adults of R. reniformis in the following ratios (Mi:Rr): 0:0, 100:0, 75:25, 50:50, 25:75, and 0:100. Soil populations of M. incognita and R. reniformis were recorded at 3, 6, 9, 14, 19, 25, 35, 45, and 60 days after inoculations. At each date, samples were taken to determine the life stage of development, number of egg masses, eggs per egg mass, galls, and giant cells or syncytia produced by the nematodes. Meloidogyne incognita and R. reniformis were capable of initially inhibiting each other when the inoculum ratio of one species was higher than the other. In concomitant infections, M. incognita was susceptible to the antagonistic effect of R. reniformis. Rotylenchulus reniformis affected hatching of M. incognita eggs, delayed secondary infection of M. incognita J2, reduced the number of egg masses produced by M. incognita, and reduced J2 of M. incognita 60 days after inoculations. In contrast, M. incognita reduced R. reniformis soil populations only when its proportion in the inoculum ratio was higher than that of R. reniformis. Meloidogyne incognita reduced egg masses produced by R. reniformis, but not production of eggs and secondary infection.  相似文献   

18.
Soils from 320 sites representing diverse undisturbed habitats from five Hawaiian Islands were assessed for occurrence of Pasteuria-like organisms. Mean annual rainfall at sites ranged from 125-350 cm, elevation from 69-2,286 m, and annual mean temperature from 12-24 C. Seven different natural communities were represented: wet lowland, mesic lowland, wet montane, mesk montane, dry montane, mesic subalpine, and dry alpine. Pasteuria spp. in a soil sample was detected by baiting with infective stages of Helicotylenchus dihystera, Meloidogyne javanica, Pratylenchus brachyurus, and Rotylenchulus reniformis, followed by cultivation of the nematodes on pineapple plants for 10-11 months. All nematode baits except R. reniformis were readily recovered from the soil samples. A sample was considered Pasteuria-positive if at least 5 % of the nematode specimens showed endospore attachment. Thirteen percent of all samples were positive for Pasteuria-like organisms. The frequencies of association between Pasteuria spp. and Meloidogyne, Helicotylenchus, or Pratylenchus species were 52%, 24%, and 24%, respectively. Positive samples were more prevalent on the older islands of Kauai and Oahu (75%), in lowland communities (61%), and in areas with introduced vegetation (60%). More than 27% of the positive samples were associated with plant species in a few selected families that included Meliaceae and Myrtaceae. Occurrence of Pasteuria spp. seemed to be positively associated with mean annual rainfall or temperature, but negatively associated with elevation.  相似文献   

19.
Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management.  相似文献   

20.
The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号