首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathogenesis of M. chitwoodi associated with potato (Solanum tuberosura cv. Russet Burbank) followed a pattern characteristic of root-knot nematodes. Giant ceils developed in the phloem tissues of roots, stolons, and tubers and appeared to arise by hypertrophy and karyokinesis rather than cellular fusion. Gall formation was a function of parasite density and developed by hypertrophy of cortical cells. Brownish lesions which are symptomatic of tuber infection resulted from lignification of cortical cell walls in contact with egg matrix.  相似文献   

2.
Metham sodium applied in October through center pivot irrigation systems was evaluated for control of Meloidogyne hapla at 374, 468, and 701 liters/ha and for control of M. chitwoodi at 468 liters/ha on potato. Metham sodium at the high rates effectively controlled M. hapla. No females were detected in the tubers at the high rates of nematicide application, whereas a mean of 19 and 69% of the tubers were infected at the low rate and in the nontreated controls, respectively. In the M. chitwoodi trial only 1.5% of the tubers in the treated plots were infected compared with 82% in the nontreated plots. Metham sodium effectively controlled M. chitwoodi to soil depths of 30, 61, and 91 cm.  相似文献   

3.
Responses of egg masses, free eggs, and second-stage juveniles (J2) ofMeloidogyne hapla and M. chitwoodi to ethoprop were evaluated. The results indicated that J2 were the most sensitive, followed by free eggs and egg masses. In general, M. chitwoodi was more susceptible to ethoprop than M. hapla. Ethoprop at 7.2 μg a.i./g soil protected tomato roots from upward migrating M. chitwoodi for 5 weeks. The zone of protection was extended to 10 and 20 cm below the root zone when 3.6 and 7.2 cm water were applied over 8 days. Ethoprop at 1.8, 3.6, and 7.2 μg a.i./g soil degraded faster and killed fewer M. chitwoodi J2 in potato field soil previously exposed to ethoprop than in unexposed soil or sterilized exposed soil. The enhanced biodegradation property of the exposed soil lasted 17 months after the last application of ethoprop. The limited downward movement of ethoprop in the soil, migration of M. chitwoodi J2 into the treated zone, presence of resistant life stage(s) at the time of application, and loss of efficacy due to enhanced biodegradation may have a significant effect on the performance of ethoprop.  相似文献   

4.
Population dynamics of Meloidogyne chitwoodi were studied for 2 years in a commercial potato field and microplots. Annual second-stage juvenile (J2) densities peaked at harvest in mid-fall, declined through the winter, and were lowest in early summer. In the field and in one microplot study, population increase displayed trimodal patterns during the 1984 and 1985 seasons. Overwintering nematodes produced egg masses on roots by 600-800 degree-days base 5 C (DD₅) after planting. Second-generation and third-generation eggs hatched by 950-1,100 DD₅ and 1,500-1,600 DD₅, respectively, and J2 densities rapidly increased in the soil. A fourth generation was observed at 2,150 DD₅ in 1985 microplot studies. Tubers were initiated by 450-500 DD₅, but J2 were not observed in the tubers until after the second generation hatched at 988-1,166 DD₅. A second period of tuber invasion was observed when third generation J2 hatched. The regional variation in M. chitwoodi damage on potato may be explained by degree-day accumulation in different potato production regions of the western United States.  相似文献   

5.
The soil fumigant 1,3-dichloropropene gave good to excellent control of the Columbia root-knot nematode, Meloidogyne chitwoodi, on potato, Solanum tuberosum L. Nonfumigant nematicides (aldicarb, fensulfothion, carbofuran, ethoprop, and phenamiphos) were less effective in controlling M. chitwoodi, since the nematode affects tuber quality more than quantity. Soil temperature during the growing season affected parasitism of M. chitwoodi on potato more than did the initial nematode population. There were positive linear correlations between degree-days and infected and galled tubers (r = 0.92), degree-days and nematode generations (r = 1.00), and infected and galled tubers and nematode generations (r = 0.91). Differences in degree-days and resultant nematode reproduction caused great variability in infection and galling of potato tubers during four growing seasons: 89% for 1979, 0% for 1980, 13% for 1981, and 18% for 1982, giving positive linear correlation (r = 0.99) between final nematode soil population (Pf) and percentage of infected and galled tubers. Corresponding increases in the soil populations of second-stage juveniles (J2) during the growing season were 9,700% in 1979, 170% in 1980,552% in 1981, and 326% in 1982. There was a negative linear correlation (r = -0.87) between initial soil J2 populations (Pi) and the degree of parasitism (infection and galling) of potato tubers, Pi being of secondary importance to degree-days.  相似文献   

6.
Postinfection development of Meloidogyne chitwoodi from second-stage juveniles (J2) to mature females and egg deposition on ''Nugaines'' winter wheat required 105, 51, 36, and 21 days at 10, 15, 20, and 25 C. At 25 C, the J2 induced cavities and hyperplasia in the cortex and apical meristem of root tips with hypertrophy of cortical and apical meristem cell nuclei, 2 and 5 days after inoculation. Giant cells induced by late J2 were observed in the stele 10 days after inoculation. Clusters of egg-laying females were common on wheat root galls 25 days after inoculation. Juveniles penetrated wheat roots at 4 C and above, but not at 2 C, when inoculum was obtained from cultures grown at 20 C, but no penetration occurred at 4 C when inoculum was stored for 12 hours at 4 C before inoculation. In northern Utah, J2 penetrated Nugaines wheat roots in the field in mid-May, about 5 months after seedling emergence. M. chitwoodi eggs were first observed on wheat roots in mid-July when plants were in blossom. Only 40% of overwintered M. chitwoodi eggs hatched at 25 C.  相似文献   

7.
One susceptible (D6) and two resistant (E2 and N4) clones of Solanum sparsipilum × (S. phureja × haploid of S. tuberosum) were used to study the responses of potato roots and tubers to race 1 of Meloidogyne incognita (Kofoid &White) Chitwood. The compatible response was characterized by rapid penetration of large numbers of second-stage juveniles (J2) into roots, cessation of root growth, and occasional curving of root tips. The life cycle of M. incognita in the susceptible clone was completed in 25 days at 23-28 C. The incompatible response was characterized by penetration of fewer J2 into roots, necrosis of feeding sites within 2-7 days, and lack of nematode development. There were no differences in response of tubers from resistant and susceptible clones to nematode infection. Small numbers of J2 were detected in tubers, but they did not develop.  相似文献   

8.
An initial density (Pi) of 1,540 Pratylenchus neglectus/kg soil suppressed shoot growth of potato, Solanum tuberosum cv. Russet Burbank, in a greenhouse test at 3 weeks. After 6 weeks, shoot weights were reduced by Pi of 662 and 1,540 nematodes/kg soil, the final soil densities of P. neglectus were twice the respective Pi, and the numbers of nematodes per gram dry root were 5,363 and 7,981. In 1986-88 field microplot experiments with the Norchip cultivar, neither shoot nor root weight was suppressed by P. neglectus. In 1986 a Pi of 115 nematodes/kg soil suppressed the total number and weight of tubers per plant. In 1987 a Pi of 186 nematodes/kg soil suppressed the marketable and total number of tubers by 19 and 25 %, respectively. In 1988 a Pi of 1,884 nematodes/ kg soil reduced total and marketable weight by 18 and 19%, respectively. In 1986 and 1987 nematode population densities in the soil increased 34-fold and 27-fold, respectively. In 1988 the Pi of 1,884 nematodes/kg soil rose to 21,890/kg at midseason, then dropped to 4,370/kg at harvest. These studies show for the first time that P. neglectus reproduces well on potato and can cause yield losses. Because of its distribution and abundance, P. neglectus may be considered an economically important parasite of potato in Ontario.  相似文献   

9.
Tomato plants were inoculated with Meloidogyne incognita at initial populations (Pi) of 0, 1, 10, 50, 100, and 200 (x 1,000) eggs per plant and maintained in a growth chamber for 40 days. Total fresh biomass (roots + shoots) at harvest was unchanged by nematode inoculation with Pi of 1 x 10⁵ eggs or less. Reductions in fresh shoot weight with increasing Pi coincided with increases in root weight. Total fresh biomass declined with Pi above 1 x 10⁵ eggs, whereas total dry biomass declined at Pi above 1 x 10⁴ eggs. The greatest reduction percentages in fresh shoot biomass induced by root-knot nematodes occurred in the stem tissue, followed by the petiole + rachis; the least weight loss occurred in the leaflets. Although biomass varied among shoot tissues, the relationship between biomass of various shoot tissues and Pi was described by quadratic equations. The linear and quadratic coefficients of the equations (stem, petiole + rachis, or leaflets on Pi) did not differ among tissues when calculations were based on standardized values. Meloidogyne incognita-infected plants had thinner leaves (leaf area/leaf weight) than did uninfected plants. Reductions in leaf weight and leaf area with nematode inoculation occurred at nodes 5-15 and 4, 6-14, respectively. Losses in plant height and mass due to nematodes reflected shorter internodes with less plant mass at each node.  相似文献   

10.
Second-stage juveniles (J2) of races 1 and 2 of Meloidogyne chiiwoodi and M. hapla readily penetrated roots of Thor alfalfa and Columbian tomato seedlings; however, few individuals of M. chitwoodi race 1 were able to establish feeding sites and mature on alfalfa. Histopathological studies indicate that J2 of race 1 either failed to initiate feeding sites or they caused cell enlargement without typical cell wall thickening. The protoplasm of these cells coagulated, and juveniles of race 1 did not develop beyond the swollen J2 stage. A few females of race 1 fed on small giant cells and deposited a few eggs at least 20 and 30 days later than M. chitwoodi race 2 and M. hapla, respectively. Failure of race 1 to establish feeding sites was related to egression of J2 from the roots. The M. chitwoodi race 1 J2 egression from alfalfa roots was higher than egression of race 2 and M. hapla. Egression of J2 of M. chitwoodi races 1 and 2 from tomato roots was similar and higher than that of M. hapla. Thus egression plays an important role in the host-parasite relationship of M. chitwoodi and alfalfa.  相似文献   

11.
Seasonal vertical migration of Meloidogyne chitwoodi through soil and its impact on potato production in Washington and Oregon was studied. Nematode eggs and second-stage juveniles (J2) were placed at various depths (0-180 cm) in tubes filled with soil and buried vertically or in holes dug in potato fields. Tubes were removed at intervals over a 12-month period and soil was bioassayed on tomato roots. Upward migration began in the spring after water had percolated through the tubes. Nematodes were detected in the top 5 cm of tubes within 1-2 months of burial, depending on depth of placement. Potatoes were grown in field plots for 4 or 5 months before the tubers were evaluated for infection. One hundred eggs and J2 per gram soil placed at 60 and 90 cm caused significant tuber damage at the Washington and Oregon sites, respectively. At the Washington site, inoculum placed at 90, 120, and 150 cm caused potato root infection without serious impact on tuber quality, but inoculum diluted 2-8 times and placed at 90 cm did not cause root or tuber infection. Nematode migration was dependent on soil texture; 9 days after placement at the bottoms of tubes, J2 had moved up 55 cm in sandy loam soil (Oregon) but only 15 cm in silt loam (Washington). Thus, the importance of M. chitwoodi which occur deep in a soil profile may depend on soil texture, population density, and length of the growing season.  相似文献   

12.
The behavior of two isolates of Pratylenchus penetrans on six potato clones was assessed to test the hypothesis that these nematode isolates from New York were different. Four potato cultivars (Superior, Russet Burbank, Butte, and Hudson) and two breeding lines (NY85 and L118-2) were inoculated with nematode isolates designated Cornell (CR) and Long Island (LI). Population increase and egression of nematodes from roots were used to distinguish resistance and susceptibility of the potato clones. Based on numbers of eggs, juveniles, and adults in their roots 30 days after inoculation, potato clones Butte, Hudson, and L118-2 were designated resistant to the CR isolate and susceptible to the LI isolate. More eggs were found in the roots of all plants inoculated with the LI isolate than with the CR isolate. The clones NY85 and L118-2 were inoculated with the CR and LI isolates in a 2 x 2 factorial experiment to assess differences in nematode egression. Egression was measured, beginning 3 days after inoculation, for 12 days. The rates of egression were similar for the four treatments and fit linear regression models, but differences were detected in numbers of egressed nematodes. More nematodes of the CR isolate than the LI isolate egressed from L118-2. Differences in egression of females was particularly significant and can be used as an alternative or supplement to reproduction tests to assess resistance in potato to P. penetrans and to distinguish variation in virulence.  相似文献   

13.
Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas RMc1(blb), the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion.  相似文献   

14.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

15.
An accession of Solanum hougasii, a wild tuber-bearing potato species native to Mexico, was found to be resistant to races 1 and 2 of Meloidogyne chitwoodi. A resistant selection was selfed and its progeny possessed the same combined resistance uniformly. A selected resistant seedling from the selfed progeny was crossed to cultivated tetraploid potato (S. tuberosum) to form an F₁ hybrid, and was backcrossed to cultivated tetraploid potato to form a BC₁ population in which resistance to the two races segregated. Progeny of the BC₁ were tested in inoculation experiments with four replicates for each progeny genotype for each race of nematode. Resistance was evaluated on the basis of extracted egg counts from the entire root system of pot-grown plants. Considering resistance to each race separately, for race 1, non-host (Rf ≤ 0.1) status was exhibited by approximately half of the BC₁. About one-third of the progeny showed non-host status to race 2. Egg production among progeny that showed non-host status for both races was higher with race 2 than with race 1. Analysis of co-segregation established that genetic control for the two races appears to be independently segregating. Although genes for resistance to race 1 derived from S. bulbocastanum and S. fendleri were previously described, this report is the first analysis showing independent genetic control in Solanum spp. for resistance to race 2 of M. chitwoodi only.  相似文献   

16.
Soils and roots of field crops in low-rainfall regions of the Pacific Northwest were surveyed for populations of plantparasitic and non-plant-parasitic nematodes. Lesion nematodes (Pratylenchus species) were recovered from 123 of 130 non-irrigated and 18 of 18 irrigated fields. Pratylenchus neglectus was more prevalent than P. thornei, but mixed populations were common. Population densities in soil were affected by crop frequency and rotation but not by tillage or soil type (P < 0.05). Many fields (25%) cropped more frequently than 2 of 4 years had potentially damaging populations of lesion nematodes. Pratylenchus neglectus density in winter wheat roots was inversely correlated with grain yield (r2 = 0.64, P = 0.002), providing the first field-derived evidence that Pratylenchus is economically important in Pacific Northwest dryland field crops. Stunt nematodes (Tylenchorhynchus clarus and Geocenamus brevidens) were detected in 35% of fields and were occasionally present in high numbers. Few fields were infested with pin (Paratylenchus species) and root-knot (Meloidogyne naasi and M. chitwoodi) nematodes. Nematodes detected previously but not during this survey included cereal cyst (Heterodera avenae), dagger (Xiphinema species), and root-gall (Subanguina radicicola) nematodes.  相似文献   

17.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

18.
Penetration, post-infectional development, reproduction, and fecundity of Meloidogyne arenaria races 1 and 2 were studied on susceptible (CNS), partially resistant (Jackson), and highly resistant (PI 200538 and PI 230977) soybean genotypes in the greenhouse. The ability to locate and invade roots was similar between races, but more juveniles penetrated roots of susceptible CNS than the resistant genotypes. At 10 days after inoculation, 56% and 99% to 100% of race 1 second-stage juveniles were vermiform or sexually undifferentiated in CNS and the resistant genotypes, respectively. In contrast, only 2%, 42%, 44%, and 62% of race 2 juveniles had not initiated development in CNS, Jackson, PI 200538, and PI 230977, respectively. By 20 days after inoculation, 88% to 100% of race 2 nematodes in roots of all genotypes were females, whereas only 25% and 1% of race 1 were females in CNS and the resistant genotypes, respectively. For all four genotypes, race 1 produce 85% to 96% fewer eggs per root system 45 days after inoculation than race 2. At 45 days after inoculation race 2 produced more eggs on CNS than the other genotypes.  相似文献   

19.
Tests of eight Dutch Meloidogyne chitwoodi isolates to the differential set for host races 1 and 2 in M. chitwoodi provided no evidence for the existence of host race 2 in the Netherlands. The data showed deviations from expected reactions on the differential hosts, which raised doubts of the usefulness of the host race classification in M. chitwoodi. The term ''''pathotype'''' is proposed for groups of isolates of one Meloidogyne sp. that exhibit the same level of pathogenicity on genotypes of one host species. We recommend that the pathotype classification be applied in pathogen-host relationships when several genotypes of a Meloidogyne sp. are tested on several genotypes of one host species. Three pathotypes of M. chitwoodi were identified on Solanum bulbocastanum, suggesting at least two different genetic factors for virulence and resistance in the pathogen and the host species, respectively. The occurrence of several virulence factors in M. chitwoodi will complicate the successful application of resistance factors from S. bulbocastanum for developing resistant potato cultivars.  相似文献   

20.
The effects of chicken litter on Meloidogyne arenaria in tomato plants cv. Rutgers were determined in the greenhouse. Tomato seedlings were transplanted into a sandy soil amended with five rates of chicken litter and inoculated with 2,000 M. arenaria eggs. After 10 days, total numbers of nematodes in the roots decreased with increasing rates of chicken litter. After 46 days, egg numbers also decreased with increasing litter rates. In another experiment, soil was amended with two litter types, N-P-K fertilizer, and the two primary constituents of chicken litter (manure and pine-shaving bedding). After 10 days, numbers of nematodes in roots were smaller in chicken-excrement treatments as compared to nonexcrement treatments. At 46 days, there were fewer nematode eggs in chicken-excrement treatments compared to nonexcrement treatments. Egg numbers also were smaller for fertilizer and pine-shaving amendments as compared to nonamended controls. Chicken litter and manure amendments suppressed plant growth by 10 days after inoculation but enhanced root weights at 46 days after inoculation. Amendment of soil with chicken litter suppressed M. arenaria and may provide practical control of root-knot nematodes as part of an integrated management system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号