首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Field trials were conducted in China in 2008 and 2009 to evaluate the efficacy of mating disruption (MD) on diamondback moth, Plutella xylostella, in cabbage, Brassica oleracea var. capitata. Effectiveness was positively correlated with the MD dispenser density in the field. A density of 167 MD dispensers per ha produced an average population decrease of about 50% compared to the conventional‐practice field. Significant fewer males were captured in pheromone‐treated and conventional‐practice fields than in the blank control field, but the difference was not significant between the pheromone‐treated and conventional‐practice fields. In addition, fewer eggs and larvae were observed in pheromone‐treated fields. Our results suggest mating disruption coupled with minimal insecticidal supplements is a promising solution for resistance management and control of diamondback moth infestation.  相似文献   

2.
Abstract 1 Two codling moth Cydia pomonella kairomonal attractants, ethyl (E,Z)‐2,4‐decadienoate (pear ester) and (E)‐β‐farnesene, were tested in an insecticide‐sprayed apple orchard and an orchard treated for mating disruption with synthetic pheromone (E,E)‐8,10‐dodecadienol (codlemone). Male captures with pear ester were higher in the pheromone‐treated than in the insecticide‐treated orchard, whereas captures with (E)‐β‐farnesene were not different. Subsequent wind tunnel experiments confirmed that pre‐exposure to sex pheromone codlemone increased the behavioural response of codling moth males to pear ester. This supports the idea that male attraction to the plant volatile pear ester and sex pheromone codlemone is mediated through the same sensory channels. 2 Pear ester is a bisexual codling moth attractant and even captures of female moths were significantly increased in the pheromone‐treated orchard. In the laboratory wind tunnel, pheromone pre‐exposure had no effect on female response to pear ester, but significantly more mated than unmated codling moth females flew upwind towards a pear ester source. Differences in mating status in insecticide‐treated vs. pheromone‐treated orchards may thus account for the differences in female trap captures with pear ester. 3 These findings are important with respect to monitoring of codling moth with pear ester in mating disruption orchards. They also emphasize the importance of host plant volatiles in pheromone‐mediated mating disruption, which has been neglected to date.  相似文献   

3.
The efficacy of mating disruption by using Isomate-M 100 pheromone dispensers and two formulations of microencapsulated sprayable pheromone for management of oriental fruit moth, Grapholita molesta (Busck), was compared with conventional insecticides in large plot studies in Henderson County, North Carolina, in 2000 and 2001. In addition, experiments were conducted in small and large plots to test the response of oriental fruit moth males to different application rates of sprayable pheromone. Pheromone trap catches were significantly reduced in mating disruption blocks compared with conventional and abandoned orchards. Pheromone traps placed in the upper canopy captured significantly more moths than traps placed in the lower canopy across all treatments, and lures loaded with 100 microg of pheromone caught more moths than traps with 300 microg, but the difference between doses was statistically significant at only one location in 2001. Isomate-M 100 provided excellent trap shutdown and was significantly more effective than sprayable pheromone formulations. Fruit damage by oriental fruit moth larvae was very low (< or = 1%) in mating disruption blocks and was generally lower than in conventional and nonmanaged blocks. Based on male moth response to pheromone traps in small plots, there was little difference among doses of sprayable pheromone, ranging from 12.4 to 49.1 g (AI)/ha, but efficacy declined at 2.4 g (AI)/ha. With the exception of one orchard, there was no significant difference between 12.4 and 37.1 g (AI)/ha under low and high oriental fruit moth population pressure in large plot studies. Mating disruption proved to be an alternative to organophosphate insecticides for managing oriental fruit moth populations in North Carolina apple orchards.  相似文献   

4.
Optimization of pheromone dosage for gypsy moth mating disruption   总被引:3,自引:0,他引:3  
The effect of aerial applications of the pheromone disparlure at varying dosages on mating disruption in low‐density gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae), populations was determined in field plots in Virginia, USA during 2000 and 2002. Six dosages [0.15, 0.75, 3, 15, 37.5, and 75 g active ingredient (AI)/ha] of disparlure were tested during the 2‐year study. A strongly positive dose–response relationship was observed between pheromone dosages and mating disruption, as measured by the reduction in male moth capture in pheromone‐baited traps and mating successes of females. Dosages of pheromone 15 g AI/ha (15, 37.5, and 75 g AI/ha) reduced the mating success of females by >99% and significantly reduced male moth catches in pheromone‐baited traps compared to untreated plots. Pheromone dosages <15 g AI/ha also reduced trap catch, but to a lesser extent than dosages 15 g AI/ha. Furthermore, the effectiveness of the lower dosage treatments (0.15, 0.75, and 3 g AI/ha) declined over time, so that by the end of the study, male moth catches in traps were significantly lower in plots treated with pheromone dosages 15 g AI/ha. The dosage of 75 g AI/ha was initially replaced by a dosage of 37.5 g AI/ha in the USDA Forest Service Slow‐the‐Spread (STS) of the Gypsy Moth management program, but the program is currently making the transition to a dosage of 15 g AI/ha. These changes in applied dosages have resulted in a reduction in the cost of gypsy moth mating disruption treatments.  相似文献   

5.
In this study, we have compared the release of sex pheromone from mating disruption dispensers exposed in the field for 12 months and from calling females. The main pheromone component of the grapevine moth, Lobesia botrana (D. and S.) (Lepidoptera: Tortricidae), is (E)‐7,(Z)‐9‐dodecadienyl acetate, and a minor component is (Z)‐9‐dodecenyl acetate. Aged dispensers from two different years emitted a much higher amount of both pheromone components than calling females. However, the summer temperature during field exposure influenced the release from mating disruption dispensers the following year. In the wind tunnel, male L. botrana were equally attracted to 12‐month, field‐exposed dispensers, a standard monitoring pheromone lure, and to synthetic (E)‐7,(Z)‐9‐dodecadienyl acetate sprayed at the rate of 0.6–60 ng h?1. Field trapping tests confirmed that aged dispensers from both years were at least as attractive to L. botrana males as a standard monitoring pheromone lure. The possible contribution of previously applied dispensers to the mating disruption efficacy during following applications is discussed.  相似文献   

6.
应用性信息素迷向法防治茶毛虫的田间试验   总被引:10,自引:0,他引:10  
2003年在贵州省黔南州都匀茶场进行了性信息素迷向法防治茶毛虫Euproctis pseudoconspersaStrand的田间试验。通过比较处理区和对照区内茶毛虫发蛾量、交配率和后代虫口密度,发现剂量为0.5mg的性信息素释放器按5 m的间隔施放的防治效果显著好于其它处理,它在越冬代和第1代试验中茶毛虫诱蛾量分别减少83.90%和70.25%,交配率分别下降78.18%和73.21%,虫口密度减少59.02%和45.71%。试验结果表明性信息素迷向法可以作为防治茶毛虫的一种手段。  相似文献   

7.
Mating disruption with a high density of sex pheromone dispensers is a new strategy recently developed for the control of the moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae). Ecodian LB dispensers, made of low-cost biodegradable material, were formulated with 10 mg of (E,Z) -7,9-dodecadienyl acetate and placed at a rate of 1,600 dispensers per ha. Seasonal dispenser performances were studied using different methods. The female attractiveness disruption and the efficacy of the method were evaluated in the field. The release rates of field-aged Ecodian LB dispensers, measured directly by solid phase microextraction, was comparable with that of the standard monitoring lure after 50-60 d of field exposure and significantly lower beyond 60 d; however, at the end of the season, it was approximately 46 times higher than that of a calling L. botrana female. Electroantennographic recordings showed that dispensers of different field age strongly stimulated male antennae. In a wind tunnel test, dispensers elicited close-range approaches and direct source contacts irrespective of their age. In fields treated with Ecodian dispensers the attractiveness of traps lured with calling females and monitoring baits was significantly reduced. Our data suggest that Ecodian dispensers are active sources of pheromone throughout the season. The efficacy of Ecodian strategy for L. botrana control was comparable with standard mating disruption and curative insecticides.  相似文献   

8.
In moth pheromone communication signals, both quantitative and qualitative intraspecific differences have been found across geographic regions. Such variation has generally been hypothesized to be due to selection, but evidence of genetic control of these differences is largely lacking. To explore the patterns of variation in pheromone signals, we quantified variation in the female sex pheromone blend and male responses of two closely related noctuid moth species in five different geographic regions for 2–3 consecutive years. We found significant variation in the ratios of sex pheromone blend components as well as in male response, not only between geographic regions but also within a region between consecutive years. The temporal variation was of a similar magnitude as the geographic variation. As far as we know, this is the first study reporting such temporal variation in moth chemical communication systems. The geographic variation seems to at least partly be controlled by genetic factors, and to be correlated with the quality of the local chemical environment. However, the pattern of temporal variation within populations suggests that optimization of the pheromonal signal also may be driven by within-generation physiological adjustments by the moths in response to their experience of the local chemical environment.  相似文献   

9.
The reluctance of Israeli vine growers to adopt the mating disruption technique to control the moth Lobesia botrana Den. & Schiff. has been attributed to the high cost of this method compared with that of traditional insecticide control. In this study, we tested the possibility of reducing the cost, first by testing different pheromone formulations (and thus open the market for competition) and second by reducing the pheromone concentration used in vineyards. Comparisons were made between two pheromone formulations--Shin-Etsu (Tokyo, Japan) at 165 g/ha and Concep (Sutera, Bend, OR) at 150 g/ha--and between two concentrations of Shin-Etsu, 165 and 110 g/ha. Pheromone dispensers were placed at the onset of the second moth generation. Comparison of the numbers of clusters infested with eggs and larvae of L. botrana showed no significant differences in the performance, either between the two formulations, or between the two tested concentrations. The results suggest that 1) the two formulations are equally effective, and 2) a low pheromone concentration is sufficient to maintain good control of small populations of L. botrana. However, when the population is high, pest control efficacy is not improved by increasing the pheromone concentration. Therefore, in the interest of reducing the relatively high cost of mating disruption, we emphasize that increasing the pheromone concentration does not provide improved control of high populations of L. botrana. The cost of mating disruption can be diminished by reducing the applied pheromone concentration and by using the least expensive pheromone formulations  相似文献   

10.
Communicational disruption mechanisms for Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), were determined using a suite of mathematical tools and graphical operations that enable differentiation between competitive attraction and non‐competitive mechanisms of disruption. Research was conducted in 20 field cages, each covering 12 mature apple trees. Commercial monitoring lures releasing Oriental fruit moth pheromone at a rate of 0.04 μg h?1 and distributed at densities of 0, 1, 2, 4, 8, and 17 per cage were used to evaluate the effect of low‐releasing dispensers on the disruption of sexual communication. Graphical analyses revealed that near‐female‐equivalent pheromone dispensers disrupted Oriental fruit moth competitively. Commercial mating disruption dispensers releasing Oriental fruit moth pheromone at 60 μg h?1 and deployed at 0, 4, 6, 10, 15, 20, and 30 per cage were used to evaluate the effect of high‐releasing dispensers on the disruption of sexual communication. Oriental fruit moth disruption shifted to a non‐competitive mechanism for high‐releasing dispensers. This is the first time such a shift in disruption mechanism has been demonstrated against a background of otherwise identical experimental conditions. Near‐female‐equivalent pheromone dispensers were also used to quantify the additive effect of an attract‐and‐remove control strategy compared with competitive mating disruption. We report a five‐fold reduction in Oriental fruit moth captures under attract‐and‐remove compared to mating disruption using near‐female‐equivalent dispensers. Surprisingly, release of female Oriental fruit moths into these large‐cage disruption studies had no measurable impact on male trapping.  相似文献   

11.
The oriental beetle, Anomala orientalis (Waterhouse) (Col., Scarabaeidae), is the most important root‐feeding pest of blueberries and turfgrass in New Jersey, USA. Previous studies showed that mating disruption is a feasible option for oriental beetle management; however, assessing its efficiency can be challenging, and little is known on its long‐term effects. Accordingly, we conducted studies to investigate low‐dose pheromone lures equivalent to oriental beetle females (i.e. female mimics) as easy‐to‐use indicators of mating disruption success, determine the distance at which oriental beetle males respond to female‐mimic lures and assess the long‐term (3‐year) effects of mating disruption on oriental beetle populations in entire blueberry fields. Our studies showed that rubber septa baited with 0.3 μg of the oriental beetle sex pheromone (Z)‐7‐tetradecen‐2‐one attract similar numbers of males as compared with virgin females and can thus be used as a female mimic. The range of attraction of this lure was found to be also similar to virgin females and <30 m. In blueberries, mating disruption provided 87% inhibition of oriental beetle populations (trap shutdown) over a 3‐year period. Oriental beetle male captures in disrupted fields were threefold higher along the field edges than in the field interiors, indicating movement of males from nearby areas into the pheromone‐treated fields. In addition, mating disruption reduced male attraction to female‐mimic lures by 93% in all 3 years and reduced the number of larvae in sentinel potted plants in 1 of 2 years. These results show for the first time that mating disruption provides consistent long‐term field‐wide control of oriental beetle populations and that female‐mimic pheromone lures can be used as a new tool to assess oriental beetle mating disruption success.  相似文献   

12.
The pine processionary moth (Thaumetopoea pityocampa) is an important pest of coniferous forests at the southern edge of its range in Maghreb. Based on mitochondrial markers, a strong genetic differentiation was previously found in this species between western (pityocampa clade) and eastern Maghreb populations (ENA clade), with the contact zone between the clades located in Algeria. We focused on the moth range in Algeria, using both mitochondrial (a 648 bp fragment of the tRNA‐cox2) and nuclear (11 microsatellite loci) markers. A further analysis using a shorter mtDNA fragment and the same microsatellite loci was carried out on a transect in the contact zone between the mitochondrial clades. Mitochondrial diversity showed a strong geographical structure and a well‐defined contact zone between the two clades. In particular, in the pityocampa clade, two inner subclades were found whereas ENA did not show any further structure. Microsatellite analysis outlined a different pattern of differentiation, with two main groups not overlapping with the mitochondrial clades. The inconsistency between mitochondrial and nuclear markers is probably explained by sex‐biased dispersal and recent afforestation efforts that have bridged isolated populations.  相似文献   

13.
Sexual communication in many moths occurs between females emitting a sex pheromone and males responding to it. Females of Ostrinia scapulalis (Lepidoptera: Crambidae) show a large variation in blend ratios of the two sex pheromone components (E)‐ and (Z)‐11‐tetradecenyl acetates. E type females produce a pheromone with a high percentage of (E)‐11‐tetradecenyl acetate, whereas Z type females produce the opposite blend. We established laboratory cultures of E and Z types. Females of the F1 generation produced an intermediate blend (I type) in both reciprocal crosses of the E and Z cultures. Results of further crossing experiments suggested that the three pheromone types are primarily controlled by a single autosomal locus with two alleles. Also, analyses of the variation in pheromone blend within F1, backcross and F2 families suggested that other genetic factors modify the pheromone blend of the I and Z types. Investigation of the pheromone variation in natural populations at 14 localities in Japan has shown that the E type was predominant in northern Japan, whereas the pheromone was highly polymorphic in central Japan. At a locality in central Japan, the pheromone was constantly polymorphic for several years, and the pheromone type frequencies did not deviate from Hardy–Weinberg expectations, providing no evidence of selection or assortative mating between the pheromone types. Analyses of pheromone variation within families derived from feral females indicated that matings between a pair with different genotypes for pheromone production was occurring in natural populations. Overall, this study showed that the genetic basis of the pheromone variation in O. scapulalis is very similar to that in its sibling species Ostrinia nubilalis although the state of pheromone polymorphisms in natural populations appears to differ between the two species. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 143–160.  相似文献   

14.
Large-plot studies were used to compare pheromone-mediated mating disruption and conventional insecticide applications for management of tufted apple bud moth, Platynota idaeusalis (Walker), in North Carolina in 1993 and 1994. Pheromone trap catches were reduced in mating disruption blocks, and traps placed in the lower stratum of the canopy had a higher level of trap capture reduction compared with traps placed in the upper stratum. First-generation tufted apple bud moth exposure to either pheromones for mating disruption or insecticides affected second generation pheromone trap catches in the lower and upper canopy. More second generation male moths were caught in pheromone traps placed in the upper compared with the lower canopy in blocks treated with pheromones for mating disruption during the first generation, whereas the opposite was true in blocks treated with insecticides during the first generation. Despite reduced trap catches in pheromone-treated blocks, egg mass densities were not reduced in these blocks compared with insecticide-treated blocks. Furthermore, fruit damage was not significantly different between mating disruption blocks and conventionally treated blocks in orchards with relatively low populations of tufted apple bud moth, but damage was greater in mating disruption blocks in orchards with higher moth densities.  相似文献   

15.
Male and female moth catches of Grapholita molesta (Busck) in traps were evaluated in stone and pome fruit orchards untreated or treated with sex pheromones for mating disruption in Uruguay, Argentina, Chile, USA, and Italy from 2015 to 2017. Trials evaluated various blends loaded into either membrane cup lures or septa. Membrane lures were loaded with terpinyl acetate (TA), acetic acid (AA) and (Z)‐3‐hexenyl acetate alone or in combinations. Two septa lures were loaded with either the three‐component sex pheromone blend for G. molesta alone or in combination with codlemone (2‐PH), the sex pheromone of Cydia pomonella (L). A third septum lure included the combination sex pheromone blend plus pear ester, (E,Z)‐2,4‐ethyl decadienoate (2‐PH/PE), and a fourth septum was loaded with only β‐ocimene. Results were consistent across geographical areas showing that the addition of β‐ocimene or (Z)‐3‐hexenyl acetate did not increase moth catches. The addition of pear ester to the sex pheromone lure marginally increased moth catches. The use of TA and AA together significantly increased moth catches compared with the use of only one of the two components. Traps with the TA/AA lure outperformed the Ajar trap baited with a liquid TA plus sugar bait. The emission rate of AA was not a significant factor affecting the performance of the TA/AA lure. The addition of TA/AA significantly increased moth catches when combined with the 2‐PH lure. The TA/AA lure also allowed traps to catch both sexes. Catch of C. pomonella with the 2‐PH lure was comparable to the use of codlemone; however, moth catch was significantly reduced with the 2‐PH/PE lure. Optimization of these complex lures can likely further improve managers’ ability to monitor G. molesta and help to develop multispecies tortricid lures for use in individual traps.  相似文献   

16.
Cigarette beetles, Lasioderma serricorne (F.) (Coleoptera: Anobiidae), cause significant damage to the multibillion dollar food and tobacco industries worldwide each year. A non‐insecticidal alternative to manage Lserricorne is the application of mating disruption, in which high levels of synthetic sex pheromone are released to create an atmosphere that results in males failing to mate females, thereby causing population suppression or extinction. The reported work used synthetic serricornin, the predominant sex pheromone of L. serricorne, in mating disruption trials conducted in selected food‐ and feed‐processing facilities in South Carolina during 2010 and 2011. Mills subjected to mating disruption trials were monitored using oviposition cups filled with larval food and pheromone traps for males that contained monitoring lures. Immediately after deployment of mating disruption dispensers, trap captures declined significantly and indicated a reduction in population levels, that is, there was ‘trap shutdown’. A significant reduction was observed in numbers of adult beetles caught in the traps 8 weeks before and 8 weeks after treatment in both years. Beetle numbers from pheromone traps in untreated buildings remained at similar levels or increased after the time of mating disruption deployment in treated buildings. The numbers of adults that emerged from oviposition food cups were generally low and varied irregularly in treated and untreated buildings and were determined to be of little value for assessing treatment effects on reproduction. These initial field studies in the USA suggest that release of the synthetic sex pheromone of L. serricorne for mating disruption can significantly inhibit proper orientation behaviour of male L. serricorne to females and may lead to pest population decline from mating disruption.  相似文献   

17.
Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex‐pheromone blend. The ratio of (E)‐11‐ and (Z)‐11‐tetradecenyl acetate (E11‐ and Z11‐14:OAc) in the pheromone blend that females produce and males respond to differs between strains of O. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure of O. nubilalis remains unknown. Host‐plant use (13C/14C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strain O. nubilalis males collected in sex‐pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl‐reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response, Resp), providing evidence of sexual inter‐selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance‐based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response and pgfar‐defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant‐defined ecological adaptation.  相似文献   

18.
Mating disruption is an environmentally safe plant protection strategy that uses a synthetic copy of an insect pheromone to interfere with sexual communication and hence reproduction. To date, a number of pest moths have been controlled with applications of formulated pheromones as mating disruptants. Recently, however, the first example of resistance to mating disruption was documented in one of the major tea pests in Japan, the smaller tea leafroller moth, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae). To avoid other such cases, it is important to elucidate the mechanism(s) by which the disruptant lost its effectiveness. To this end, we imposed further selection by rearing field‐collected resistant insects with a synthetic pheromone in the laboratory. After more than 70 generations of selection, a strain with quite strong resistance was established, males of which could find and copulate with their mates even in the presence of 1 mg l?1 of disruptant. Although the mating ability of this strain was greatly increased, the composition and blend ratio of the sex pheromone produced and emitted by females were not obviously changed in comparison with those of females sensitive to mating disruption. However, male response to the pheromone blend was markedly broadened after selection so that resistant males could locate a synthetic pheromone source even when it lacked a pheromone component that is normally necessary for attraction. Males capable of locking onto off‐ratio pheromone blends may be better able to find calling females in pheromone‐treated environments than narrowly tuned males because of greater capability of overcoming sensory imbalance.  相似文献   

19.
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is the most important African stem borer damaging maize and sorghum. Chemical mediators play an essential role in all life cycle of this moth, especially for mating recognition and host plant choice. The female sex pheromone, courtship and mating behaviours act on the reproductive isolation within insect populations. B. fusca courtship behaviour was studied to decipher each step that could account as a process for reproductive isolation. B. fusca males and females presented a very simple and fast courtship behaviour, without any particular events or male pheromone emission.  相似文献   

20.
Over a 2-year period field trials were conducted to assess the potential to disrupt mating ofPlutella xylostella (L.) using a commercial rope formulation of a 70:30 mixture of (Z)-11-hexadecenal and (Z)-11-hexadecenyl acetate, two components of the sex pheromone of the female. Screened field cages were placed into blocks of cabbage which were either treated with the pheromone or left untreated. Different densities of P. xylostella pupae were placed into each cage and then larval and pupal counts were made of the subsequent generation. In addition, sentinel females at mating stations were placed in each cage to assess the influence of the pheromone on the ability of males to locate and mate with females. Likewise, we used pheromone traps to assess whether the pheromone treatment influenced the ability of males to locate a pheromone source. In both years larval and pupal populations, produced as a result of the original inoculation, did not differ between pheromone-treated and untreated fields. The effect of pheromone treatment on larval and pupal numbers did not change with changes in inoculated P. xylostella density, however, the density of P. xylostella released caused significant differences in the density of the subsequent generation. No significant differences were detected between the number of sentinel female adult P. xylostella that successfully mated in pheromone-treated fields compared with untreated fields. Significant differences in the numbers of male P. xylostella caught in pheromone-baited traps occurred between pheromone-treated and untreated fields in the first trial of 1993, and in the first trial in 1994 but not in the second trial. Such differences are often thought of as indications of mating disruption, although our other data presented in this study and reports from other studies indicate this is not always the case. Previous studies on mating disruption of P. xylostella in larger scale field tests have been performed but the results have been variable and often ambiguous. Overall, our results indicate that mating disruption of P. xylostella with the present technology does not appear to work even under the very controlled situations which we utilized to eliminate insect movement between plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号