首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus strain QC1-2, isolated from a chromium-polluted zone, was selected by its high ability to both tolerate and reduce hexavalent chromium [Cr(VI)] to less-toxic trivalent chromium [Cr(III)]. Cell suspensions of strain QC1-2 rapidly reduced Cr(VI), in both aerobic and anaerobic conditions, to Cr(III) which remained in the supernatant. Cr(VI) reduction was dependent on the addition of glucose but sulfate, an inhibitor of chromate transport, had no effect. Studies with permeabilized cells and cell extracts showed that the Cr(VI) reductase of strain QC1-2 is a soluble NADH-dependent enzyme.  相似文献   

2.
Metabolically-active mycelia of Penicillium sp. PT1 took up Zn2+ in a biphasic mode, involving an initial energy-dependent binding of Zn2+ to the cell surface, followed by a slower intracellular accumulation. The independent binding probably involved a simple ion exchange, as indicated by the pH decrease during the initial adsorption from 4.55 to 3.28. Intracellular accumulation probably involved polyphosphate precipitation as suggested by transmission electron microscopy  相似文献   

3.
Recombinant Mycobacterium sp. strain MR65 harboring dszABCD genes was used to desulfurize alkyl dibenzothiophenes (Cx-DBTs) in n-hexadecane. The specific desulfurization activity for 2,4,6,8-tetraethyl DBT (C8-DBT) by DszC enzyme was about twice that for 4,6-dipropyl DBT (C6-DBT). However, the degradation rate of 2,4,6,8-tetraethyl DBT in n-hexadecane by resting cells of strain MR65 was only about 40% of that of 4,6-dipropyl DBT. These results indicated that the desulfurization ability for Cx-DBTs by resting cells depends on carbon number substituted at positions 4 and 6 and that the rate-limiting step in the desulfurization reaction of highly alkylated Cx-DBTs is the transfer process from the oil phase into the cell.  相似文献   

4.
The coastal waters of countries bordering on an ocean show increases in manganese pollution due to runoff from mining activity and from industries dealing with production of ferroalloys, steel, iron, petrochemicals, and fertilizers. One gram of dried cells of haloarchaeon Halobacterium sp. GUSF (MTCC3265) adsorbed 99% Mn2+ in 60 min at pH 6.8 and 30ºC on contact with 109.54 mg Mn2+ per liter in saline solution. Adsorbed Mn2+ was quantified by atomic absorption spectrometry and demonstrated on the cell surface by SEM-EDX. Mn2+ adsorbed to functional groups of the adsorbent was studied by FTIR. The adsorption process of Mn2+ showed saturation and followed pseudo–second-order kinetics; was consistent with the homogeneity of the Langmuir model (R2 of 0.99); exhibited a Qmax of 62.5 mg g?1 and a binding energy of 0.018 L mg?1. The Mn2+adsorption was also consistent with the heterogeneity of the Freundlich model by exhibiting a Kf of 1.0 mg g?1 with an n value of 1.1. Adsorption efficiency of 99% was retained even after a third adsorption-desorption cycle. This is the first report on metal ion adsorption, using Mn2+ as an example, by the haloarchaeon Halobacterium sp. GUSF (MTCC3265) in the domain Archaea.  相似文献   

5.
Summary A selection procedure using Mn2+ is described. A high percentage of the Mn2+ resistant mutants had constitutive iron transport systems. By P1 transduction, and complementation with the cloned fur gene it could be shown that nearly all the mutants constitutive in the expression of the operon fusion fiu::placMu were only defective in fur. High concentrations of manganese inhibited the derepression of an iron-regulated lac operon fusion. In another iron-regulated lac operon fusion that was inducible by iron, manganese also induced the production of -galactosidase. Most of the fur mutants isolated (80%) were not able to grow on succinate, fumarate or acetate. After transformation with a fur + plasmid all 39 mutants tested were able to grow on succinate. In fur mutants the presence of succinate in the growth medium reduced succinate uptake rates by 50%–70%. Succinate dehydrogenase activity was reduced to 10% of that of the parent strain.  相似文献   

6.
肠膜状明串珠菌在其产生的右旋糖酐蔗糖酶的作用下,以蔗糖为原料转化合成右旋糖酐和产生果糖。着重进行了Mn~(2+)对肠膜状明串珠菌Lm-1226发酵产右旋糖酐影响的初步探索。对Mn~(2+)对肠膜状明串珠菌Lm-1226的生长,产果糖、右旋糖酐和右旋糖酐蔗糖酶,右旋糖酐蔗糖酶作用影响进行了研究。一定浓度的Mn~(2+)对肠膜状明串珠菌Lm-1226的生长具有促进作用; Mn~(2+)抑制肠膜状明串珠菌Lm-1226发酵产果糖和右旋糖酐,且Mn~(2+)浓度越高,抑制性越强; Mn~(2+)对肠膜状明串珠菌Lm-1226发酵产右旋糖酐蔗糖酶有抑制作用; Mn~(2+)对右旋糖酐蔗糖酶具有较强的激活作用,激活作用可达158%,最适Mn~(2+)浓度为5. 0 mmol/L。  相似文献   

7.
A bacterial strain, PNS-1, isolated from activated sludge, could utilize sulphanilic acid (4-ABS) as the sole organic carbon and energy source under aerobic conditions. Determination and comparison of 16S r DNA sequences showed that the strain PNS-1 is closely related to the species of Agrobacterium genus. Growth on 4-ABS was accompanied with ammonia and sulfate release. TOC results showed complete mineralization of sulphanilic acid. This strain was highly specific for 4-ABS as none of the sulphonated aromatics used in the present study including other ABS isomers were utilized. Strain PNS-1 could, however, utilize all the tested monocyclic aromatic compounds devoid of a sulfonate group. No intermediates could be detected either in the growth phase or with dense cell suspensions. Presence of chloramphenicol completely inhibited 4-ABS degradation by cells pregrown on succinate, indicating that degradation enzymes are inducible. No plasmid could be detected in the Agrobacterium sp. Strain PNS-1 suggesting that 4-ABS degradative genes may be chromosomal encoded.  相似文献   

8.
Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn2+, veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn2+ and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.  相似文献   

9.
Forty-eight strains of Salmonella enterica subsp. enterica serovar Agona and 33 strains of Salmonella enterica subsp. enterica serovar Weltevreden were characterized by random amplified polymorphic DNA (RAPD) fingerprinting using 3 different arbitrary primer, Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction (ERIC-PCR) and antimicrobial susceptibility testing. By using RAPD, 81 strains (44 strains of S. Agona and 33 strains of S. Weltevreden) can be clustered into 14 groups and 6 single isolates whereas ERIC-PCR produced 7 clusters and 3 single isolates. Thirteen antimicrobial agents were used and all the isolates were resistant to erythromycin and showed Multiple Antimicrobial Resistance indexes, ranging from 0.08 to 0.62. Poultry still remain as the common reservoir for multi-drug-resistant Salmonella. On the other hand, vegetables contaminated with S. Weltevreden showed a gain in antimicrobial resistance. Besides that, consistent antibiograms were observed from S. Weltevreden isolated at Kajang wet market on 2000/08/02.  相似文献   

10.
Based on a field observation at the Vinh Quang coast in northern Vietnam, the characteristics of wave reduction due to the drag force of one mangrove species, Sonneratia sp., were quantitatively analyzed. The reduction rate of sea waves in this area changed substantially with the tidal phase, due to the unique vertical configuration of Sonneratia sp. At the shallow range of water depth, since the shape of pneumatophores of Sonneratia sp. tapers off upward, the effect of drag force by these roots on the wave reduction decreased with the increase in the water level, resulting in a decrease in the rate of wave reduction. On the other hand, when water levels rose above the height of thickly spread branches and leaves of these trees, the rate of wave reduction increased again with an increase in the water level. Further, at this high range of water level, the rate of wave reduction depended strongly on the incident wave height. These results indicate that the thickly grown mangrove leaves effectively dissipate huge wave energy which occurs during storms such as typhoons, and protect coastal areas. Referring to the past studies, our results suggest that the hydrodynamic knowledge in various mangrove conditions such as the vertical configuration of mangrove species, their vegetation conditions, water depth, incident wave condition and the relationships between these factors should be further accumulated and then quantitatively formulated in order to protect coastal areas from severe sea waves.  相似文献   

11.
Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC50 = 28.3 μM) but less toxic to strain TM1 (IC50 = 215 μM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase–peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100.  相似文献   

12.
The present investigation reports, the synthesis of manganese oxide (α-Mn2O3) nanobundles using thermal decomposition and its physicochemical characterization. The α-Mn2O3 nanobundles have been prepared using manganese oxalate dihydrate powders as precursor in the presence of oleylamine and triphenylphosphine as solvent and capping agent. Transmission electron microscopy (TEM) analysis demonstrated Mn2O3 nanobundles compose of nanospheres with diameter 30 nm. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. Manganese oxide nanocrystals have been prepared under different condition. The controlled experimental results showed that the use of oleylamine and triphenylphosphine as the solvent and capping agent in the chemical process played important role in the formation of the final products.  相似文献   

13.
The carriage rate of Salmonella in the gut of three lizard species, namely the Agama lizard (Agama agama) (64), the wall gecko (Geckonidae) (60), the snake lizard (Ameiva ameiva) (52), and 60 samples of lizard dropping; and their survival under various environmental conditions was investigated. A gastrointestinal Salmonella carriage rate of 32, 39 and 48% were observed for the wall gecko, the Agama and snake lizards respectively. An isolation rate of 35% was also recorded for pooled lizard droppings. Salmonella survived in the droppings for 4 weeks in tap water and wet sand, 6 weeks in direct contact with air and up to 8 weeks when mixed with dry sand. An inoculum of 106 c.f.u./g of a pure Salmonella isolate obtained from the lizard droppings proliferated extensively in sterile wet and dry soil samples, but decreased rapidly in the other environments. Salmonella was still detectable after 3 weeks in non-sterile wet and dry soil samples, up to 2 weeks in tap water, and approximately 8 days in powdered milk and gari. The potential public health significance of the observations is discussed.  相似文献   

14.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   

15.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

16.
Strain S-36, a marine Pseudomonas sp., was grown under manganese limitation in continuous culture. At dilution rates below a maximal growth rate of 0.066 h-1, the rate at which the organism fixed CO2 into macromolecules was equal to the cell carbon production rate. In addition, the total amount of cell carbon or CO2 fixed at steady-state was in proportion to the amount of energy available from the oxidation of Mn2+ in the medium. These data suggest that the organism can grow by obtaining the energy for CO2 fixation from manganese oxidation.  相似文献   

17.
Two chromium-resistant bacterial strains, CrT-1 and CrT-13, tolerant up to 40mg K2CrO4 ml–1 on nutrient agar, 25mgml–1 in nutrient broth, and up to 10mgml–1 in acetate-minimal media, were identified as Ochrobactrum intermedium and Brevibacterium sp., respectively, on the basis of 16S rRNA gene sequencing. Uptake of chromate was greater in living cells than in heat-killed on dried cells. CrT-1 reduced 82%, 28% and 16% of Cr(VI) at 100, 500, and 1000gml–1 after 24h while CrT-13 reduced 41%, 14% and 9%. Other heavy metals at low concentrations did not affect these reductions. At 150 and 300gml–1 in an industrial effluent sample Cr(VI) was reduced by 87% and 71%, respectively, with CrT-1 and by 68% and 47% with CrT-13.Revisions requested 17 May 2004; Revisions received 2 July 2004  相似文献   

18.
Aims: To isolate and characterize a potent molybdenum‐reducing bacterium. Methods and Results: A minimal salt medium supplemented with 10 mmol l?1 molybdate, glucose (1·0%, w/v) as a carbon source and ammonium sulfate (0·3%, w/v) as a nitrogen source was used in the screening process. A molybdenum‐reducing bacterium was isolated and tentatively identified as Pseudomonas sp. strain DRY2 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Strain DRY2 produced 2·4, 3·2 and 6·2 times more molybdenum blue compared to Serratia marcescens strain DRY6, Enterobacter cloacae strain 48 and Eschericia coli K12, respectively. Molybdate reduction was optimum at 5 mmol l?1 phosphate. The optimum molybdate concentration that supported molybdate reduction at 5 mmol l?1 phosphate was between 15 and 25 mmol l?1. Molybdate reduction was optimum at 40°C and at pH 6·0. Phosphate concentrations higher than 5 mmol l?1 strongly inhibited molybdate reduction. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide and cyanide did not inhibit the molybdenum‐reducing enzyme activity. Chromium, copper, mercury and lead inhibited the molybdenum‐reducing activity. Conclusions: A novel molybdenum‐reducing bacterium with high molybdenum reduction capacity has been isolated. Significance and Impact of the Study: Molybdenum is an emerging global pollutant that is very toxic to ruminants. The characteristics of this bacterium suggest that it would be useful in the bioremediation of molybdenum pollutant.  相似文献   

19.
A bacterium, designated as Moraxella sp., was enriched with 2-hydroxyphenylglyoxylate (2HPGA) as sole source of carbon and energy. Identified metabolites and enzyme activities determined with whole cells and extracts indicated that 2HPGA was degraded by an inducible sequence of enzymes via salicylaldehyde, salicylate, and gentisate; only minute amounts of salicylate were converted to catechol. Further evidence was obtained that permeases were necessary for the uptake of most aromatic compounds utilized for growth. For the direct determination of 2HPGA decarboxylase activity, an enzyme assay involving high-performance liquid chromatography for quantitation of the substrate was developped to study the initial step of the degradative pathway.  相似文献   

20.
Essential metal ion homeostasis is based on regulated uptake of metal ions, both during its scarcity and abundance.Pseudomonas putida strain S4, a multimetal resistant bacterium, was employed to investigate Ni2+ entry into cells. It was observed that Mg2+ regulates the entry of Ni2+ and by this plays a protective role to minimize Ni2+ toxicity in this strain. This protection was evident in both growth as well as viability. Intracellular accumulation of Ni2+ varied in accordance with Mg2+ concentrations in the medium. It was hypothesized that Ni2+ enters the cell using a broad Mg2+ pump, i.e. the CorA system, as the CorA inhibitor, i.e. Co(III) Hex, also inhibits Ni2+ uptake. This led to the inference that Mg2+-based protection was basically due to competitive inhibition of Ni2+ uptake. We also show that Zn2+ can further regulate the entry of Ni2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号